Shiping Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12121074/publications.pdf

Version: 2024-02-01

414414 257450 2,282 32 24 32 h-index citations g-index papers 32 32 32 3186 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nitrogen addition amplified water effects on species composition shift and productivity increase. Journal of Plant Ecology, 2021, 14, 816-828.	2.3	7
2	Soil moisture, temperature and nitrogen availability interactively regulate carbon exchange in a meadow steppe ecosystem. Agricultural and Forest Meteorology, 2021, 304-305, 108389.	4.8	8
3	Resistance and resilience of grasslands to drought detected by SIF in inner Mongolia, China. Agricultural and Forest Meteorology, 2021, 308-309, 108567.	4.8	15
4	Attribute parameter characterized the seasonal variation of gross primary productivity (αGPP): Spatiotemporal variation and influencing factors. Agricultural and Forest Meteorology, 2020, 280, 107774.	4.8	9
5	Reduction of structural impacts and distinction of photosynthetic pathways in a global estimation of GPP from space-borne solar-induced chlorophyll fluorescence. Remote Sensing of Environment, 2020, 240, 111722.	11.0	83
6	Contrasting the Performance of Eight Satellite-Based GPP Models in Water-Limited and Temperature-Limited Grassland Ecosystems. Remote Sensing, 2019, 11, 1333.	4.0	25
7	Changing precipitation exerts greater influence on soil heterotrophic than autotrophic respiration in a semiarid steppe. Agricultural and Forest Meteorology, 2019, 271, 413-421.	4.8	56
8	Asymmetric sensitivity of ecosystem carbon and water processes in response to precipitation change in a semiâ€arid steppe. Functional Ecology, 2017, 31, 1301-1311.	3.6	84
9	Exacerbated nitrogen limitation ends transient stimulation of grassland productivity by increased precipitation. Ecological Monographs, 2017, 87, 457-469.	5.4	87
10	Nonlinear responses of ecosystem carbon fluxes and waterâ€use efficiency to nitrogen addition in Inner Mongolia grassland. Functional Ecology, 2016, 30, 490-499.	3 . 6	75
11	The effects of grazing and watering on ecosystem CO2 fluxes vary by community phenology. Environmental Research, 2016, 144, 64-71.	7.5	11
12	Contrasting diel hysteresis between soil autotrophic and heterotrophic respiration in a desert ecosystem under different rainfall scenarios. Scientific Reports, 2015, 5, 16779.	3.3	19
13	Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2788-2793.	7.1	265
14	Simulated rain addition modifies diurnal patterns and temperature sensitivities of autotrophic and heterotrophic soil respiration in an arid desert ecosystem. Soil Biology and Biochemistry, 2015, 82, 143-152.	8.8	28
15	Water and nitrogen availability co-control ecosystem CO2 exchange in a semiarid temperate steppe. Scientific Reports, 2015, 5, 15549.	3.3	18
16	Precipitation Regime Shift Enhanced the Rain Pulse Effect on Soil Respiration in a Semi-Arid Steppe. PLoS ONE, 2014, 9, e104217.	2.5	41
17	Evaluating the influences of measurement time and frequency on soil respiration in a semiarid temperate grassland. Science Bulletin, 2014, 59, 2726-2730.	1.7	2
18	A Comparison of Satellite-Derived Vegetation Indices for Approximating Gross Primary Productivity of Grasslands. Rangeland Ecology and Management, 2014, 67, 9-18.	2.3	30

#	Article	IF	CITATION
19	Net ecosystem productivity of temperate grasslands in northern China: An upscaling study. Agricultural and Forest Meteorology, 2014, 184, 71-81.	4.8	42
20	Satellite-Based Analysis of Evapotranspiration and Water Balance in the Grassland Ecosystems of Dryland East Asia. PLoS ONE, 2014, 9, e97295.	2.5	26
21	Carbon fluxes, evapotranspiration, and water use efficiency of terrestrial ecosystems in China. Agricultural and Forest Meteorology, 2013, 182-183, 76-90.	4.8	211
22	Modelling gross primary production in semi-arid Inner Mongolia using MODIS imagery and eddy covariance data. International Journal of Remote Sensing, 2013, 34, 2829-2857.	2.9	26
23	Water regulated effects of photosynthetic substrate supply on soil respiration in a semiarid steppe. Global Change Biology, 2011, 17, 1990-2001.	9.5	91
24	Increasing water and nitrogen availability enhanced net ecosystem CO2 assimilation of a temperate semiarid steppe. Plant and Soil, 2011, 349, 227-240.	3.7	42
25	A general predictive model for estimating monthly ecosystem evapotranspiration. Ecohydrology, 2011, 4, 245-255.	2.4	195
26	Differential responses of auto―and heterotrophic soil respiration to water and nitrogen addition in a semiarid temperate steppe. Global Change Biology, 2010, 16, 2345-2357.	9.5	136
27	Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe. Global Change Biology, 2009, 15, 2450-2461.	9.5	190
28	Poplar plantation has the potential to alter the water balance in semiarid Inner Mongolia. Journal of Environmental Management, 2009, 90, 2762-2770.	7.8	64
29	Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types. Agricultural and Forest Meteorology, 2009, 149, 1800-1809.	4.8	138
30	Cultivation and grazing altered evapotranspiration and dynamics in Inner Mongolia steppes. Agricultural and Forest Meteorology, 2009, 149, 1810-1819.	4.8	73
31	Spatial variability in soil heat flux at three Inner Mongolia steppe ecosystems. Agricultural and Forest Meteorology, 2008, 148, 1433-1443.	4.8	45
32	Comparing physiological responses of two dominant grass species to nitrogen addition in Xilin River Basin of China. Environmental and Experimental Botany, 2005, 53, 65-75.	4.2	140