Shuai Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12120484/publications.pdf Version: 2024-02-01

SHUALLIANC

#	Article	IF	CITATIONS
1	From Hydrogen Bond to van der Waals Force: Molecular Scalpel Strategy to Exfoliate a Two-Dimensional Metal–Organic Nanosheet. Inorganic Chemistry, 2022, 61, 5465-5468.	4.0	Ο
2	Molecular engineering in a family of pillared-layered metal–organic frameworks for tuning gas adsorption behavior. Dalton Transactions, 2021, 50, 7409-7416.	3.3	5
3	Bifunctional electrocatalysts for Zn–air batteries: recent developments and future perspectives. Journal of Materials Chemistry A, 2020, 8, 6144-6182.	10.3	207
4	Characterizing key features in the formation of ice and gas hydrate systems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180167.	3.4	22
5	Transient Translational and Rotational Water Defects in Gas Hydrates. Journal of Physical Chemistry C, 2017, 121, 17595-17602.	3.1	8
6	Molecular Mechanisms of Gas Diffusion in CO ₂ Hydrates. Journal of Physical Chemistry C, 2016, 120, 16298-16304.	3.1	46
7	Molecular dynamics study of CH ₄ –CO ₂ mixed hydrate dissociation. Asia-Pacific Journal of Chemical Engineering, 2015, 10, 823-832.	1.5	6
8	The nucleation of gas hydrates near silica surfaces. Canadian Journal of Chemistry, 2015, 93, 791-798.	1.1	30
9	Recovering CH ₄ from Natural Gas Hydrates with the Injection of CO ₂ –N ₂ Gas Mixtures. Energy & Fuels, 2015, 29, 1099-1106.	5.1	44
10	Clathrate structure-type recognition: Application to hydrate nucleation and crystallisation. Journal of Chemical Physics, 2015, 142, 244503.	3.0	33
11	Communication: Structural interconversions between principal clathrate hydrate structures. Journal of Chemical Physics, 2015, 143, 011102.	3.0	18
12	Molecular Insights into the Homogeneous Melting of Methane Hydrates. Journal of Physical Chemistry C, 2014, 118, 28542-28547.	3.1	27
13	Nucleation of Gas Hydrates within Constant Energy Systems. Journal of Physical Chemistry B, 2013, 117, 1403-1410.	2.6	68
14	Exploring nucleation of H2S hydrates. Chemical Science, 2011, 2, 1286.	7.4	86
15	The Mobility of Water Molecules through Gas Hydrates. Journal of the American Chemical Society, 2011, 133, 1870-1876.	13.7	55
16	Crystal growth simulations of methane hydrates in the presence of silica surfaces. Physical Chemistry Chemical Physics, 2011, 13, 19856.	2.8	106
17	Theoretical Investigation of Electrochemical Signal from Nanoscale Systems. Electroanalysis, 2011, 23, 1447-1453.	2.9	11
18	Explorations of gas hydrate crystal growth by molecular simulations. Chemical Physics Letters, 2010, 494, 123-133.	2.6	89

Shuai Liang

#	Article	IF	CITATIONS
19	Crystal Growth Simulations of H ₂ S Hydrate. Journal of Physical Chemistry B, 2010, 114, 9563-9571.	2.6	66
20	The time delay in electrochemical measurements of a finite-volume system. Journal of Electroanalytical Chemistry, 2009, 633, 235-239.	3.8	5
21	The electrochemical behavior of a system with a limited number of molecules. Journal of Solid State Electrochemistry, 2008, 12, 701-706.	2.5	3
22	Dynamic Characterization of the Postbreaking Behavior of a Nanowire. Journal of Physical Chemistry C, 2008, 112, 20088-20094.	3.1	54
23	Where, and How, Does a Nanowire Break?. Nano Letters, 2007, 7, 1208-1212.	9.1	87
24	<i>In Situ</i> Raman Analysis on the Dissociation Behavior of Mixed CH ₄ –CO ₂ Hydrates. Energy & Fuels, 0, , .	5.1	15