
Inger Lauritzen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12117990/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Accumulation ofÂamyloid precursor protein C-terminal fragments triggers mitochondrial structure, function, and mitophagy defects in Alzheimer's disease models and human brains. Acta Neuropathologica, 2021, 141, 39-65.	7.7	114
2	ls Î ³ -secretase a beneficial inactivating enzyme of the toxic APP C-terminal fragment C99?. Journal of Biological Chemistry, 2021, 296, 100489.	3.4	32
3	Transcription- and phosphorylation-dependent control of a functional interplay between XBP1s and PINK1 governs mitophagy and potentially impacts Parkinson disease pathophysiology. Autophagy, 2021, 17, 4363-4385.	9.1	26
4	The Transcription Factor EB Reduces the Intraneuronal Accumulation of the Beta-Secretase-Derived APP Fragment C99 in Cellular and Mouse Alzheimer's Disease Models. Cells, 2020, 9, 1204.	4.1	10
5	Targeting Î ³ -secretase triggers the selective enrichment of oligomeric APP-CTFs in brain extracellular vesicles from Alzheimer cell and mouse models. Translational Neurodegeneration, 2019, 8, 35.	8.0	28
6	Nuclear p53-mediated repression of autophagy involves PINK1 transcriptional down-regulation. Cell Death and Differentiation, 2018, 25, 873-884.	11.2	87
7	β-Amyloid Precursor Protein Intracellular Domain Controls Mitochondrial Function by Modulating Phosphatase and Tensin Homolog–Induced Kinase 1 Transcription in Cells and in Alzheimer Mice Models. Biological Psychiatry, 2018, 83, 416-427.	1.3	45
8	Intraneuronal accumulation of C99 contributes to synaptic alterations, apathy-like behavior, and spatial learning deficits in 3×TgAD and 2×TgAD mice. Neurobiology of Aging, 2018, 71, 21-31.	3.1	40
9	Post-translational remodeling of ryanodine receptor induces calcium leak leading to Alzheimer's disease-like pathologies and cognitive deficits. Acta Neuropathologica, 2017, 134, 749-767.	7.7	130
10	Intraneuronal aggregation of the β-CTF fragment of APP (C99) induces Aβ-independent lysosomal-autophagic pathology. Acta Neuropathologica, 2016, 132, 257-276.	7.7	158
11	Study on Aβ34 biology and detection in transgenic mice brains. Neurobiology of Aging, 2014, 35, 1570-1581.	3.1	17
12	Leaky Ryanodine receptors increases Amyloid-beta load and induces memory impairments in Tg2576 mouse model of Alzheimer disease. Molecular Neurodegeneration, 2013, 8, P54.	10.8	3
13	The β-Secretase-Derived C-Terminal Fragment of βAPP, C99, But Not Aβ, Is a Key Contributor to Early Intraneuronal Lesions in Triple-Transgenic Mouse Hippocampus. Journal of Neuroscience, 2012, 32, 16243-16255.	3.6	168
14	Evidence that the Amyloid-β Protein Precursor Intracellular Domain, AICD, Derives From β-Secretase-Generated C-Terminal Fragment. Journal of Alzheimer's Disease, 2012, 30, 145-153.	2.6	73
15	Ryanodine Receptor Blockade Reduces Amyloid-β Load and Memory Impairments in Tg2576 Mouse Model of Alzheimer Disease. Journal of Neuroscience, 2012, 32, 11820-11834.	3.6	197
16	Pkd1-inactivation in vascular smooth muscle cells and adaptation to hypertension. Laboratory Investigation, 2011, 91, 24-32.	3.7	30
17	Polycystin-1 and -2 Dosage Regulates Pressure Sensing. Cell, 2009, 139, 587-596.	28.9	299
18	The TASK background K2P channels: chemo- and nutrient sensors. Trends in Neurosciences, 2007, 30, 573-580.	8.6	68

INGER LAURITZEN

#	Article	IF	CITATIONS
19	The background K+ channel TASK-3 is regulated at both the transcriptional and post-transcriptional levels. Biochemical and Biophysical Research Communications, 2006, 348, 1350-1357.	2.1	6
20	Membrane Potential-regulated Transcription of the Resting K+ Conductance TASK-3 via the Calcineurin Pathway. Journal of Biological Chemistry, 2006, 281, 28910-28918.	3.4	30
21	A phospholipid sensor controls mechanogating of the K+ channel TREK-1. EMBO Journal, 2005, 24, 44-53.	7.8	215
22	Crossâ€ŧalk between the mechanoâ€gated K 2P channel TREKâ€1 and the actin cytoskeleton. EMBO Reports, 2005, 6, 642-648.	4.5	121
23	K+-dependent Cerebellar Granule Neuron Apoptosis. Journal of Biological Chemistry, 2003, 278, 32068-32076.	3.4	177
24	A Potent Protective Role of Lysophospholipids against Global Cerebral Ischemia and Glutamate Excitotoxicity in Neuronal Cultures. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 821-834.	4.3	89
25	M-type KCNQ2-KCNQ3 potassium channels are modulated by the KCNE2 subunit. FEBS Letters, 2000, 480, 137-141.	2.8	67
26	The KCNQ2 potassium channel: splice variants, functional and developmental expression. Brain localization and comparison with KCNQ3. FEBS Letters, 1998, 438, 171-176.	2.8	124
27	A New Member of the Rho Family, Rnd1, Promotes Disassembly of Actin Filament Structures and Loss of Cell Adhesion. Journal of Cell Biology, 1998, 141, 187-197.	5.2	330
28	The structure, function and distribution of the mouse TWIK-1 K+ channel. FEBS Letters, 1997, 402, 28-32.	2.8	109
29	The Potassium Channel Opener (â^')-Cromakalim Prevents Glutamate-Induced Cell Death in Hippocampal Neurons. Journal of Neurochemistry, 1997, 69, 1570-1579.	3.9	81