Ying Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12117909/publications.pdf Version: 2024-02-01

VINC XIA

#	Article	IF	CITATIONS
1	Sustainable Polyurethane–Lignin Aqueous Dispersions and Thin Films: Rheological Behavior and Thermomechanical Properties. ACS Applied Polymer Materials, 2020, 2, 5198-5207.	4.4	7
2	Thermoâ€Mechanical and Antibacterial Properties of Soybean Oilâ€Based Cationic Polyurethane Coatings: Effects of Amine Ratio and Degree of Crosslinking. Macromolecular Materials and Engineering, 2014, 299, 1042-1051.	3.6	39
3	Semi-interpenetrating polymer networks prepared from in situ cationic polymerization of bio-based tung oil with biodegradable polycaprolactone. RSC Advances, 2014, 4, 6710.	3.6	15
4	Biorenewable ROMP-based thermosetting copolymers from functionalized castor oil derivative with various cross-linking agents. Polymer, 2014, 55, 5718-5726.	3.8	15
5	Bio-based Thermosetting Polymers from Vegetable Oils. Journal of Renewable Materials, 2013, 1, 3-27.	2.2	57
6	Soy-castor oil based polyols prepared using a solvent-free and catalyst-free method and polyurethanes therefrom. Green Chemistry, 2013, 15, 1477.	9.0	153
7	Polyurethanes from Isosorbideâ€Based Diisocyanates. ChemSusChem, 2013, 6, 1182-1185.	6.8	68
8	Rheological Behavior of Environmentally Friendly Castor Oil-Based Waterborne Polyurethane Dispersions. Macromolecules, 2013, 46, 4606-4616.	4.8	128
9	Broadband Dielectric Relaxation Spectroscopy of Functionalized Biobased Castor Oil Copolymer Thermosets. Macromolecular Chemistry and Physics, 2013, 214, 2891-2902.	2.2	3
10	Antibacterial Soybeanâ€Oilâ€Based Cationic Polyurethane Coatings Prepared from Different Amino Polyols. ChemSusChem, 2012, 5, 2221-2227.	6.8	59
11	Rheokinetics of Ring-Opening Metathesis Polymerization of Bio-Based Castor Oil Thermoset. Macromolecules, 2012, 45, 7729-7739.	4.8	18
12	Influence of Electron Beam Irradiation on the Mechanical Properties of Vegetableâ€Oilâ€Based Biopolymers. Macromolecular Materials and Engineering, 2012, 297, 799-806.	3.6	4
13	Castorâ€Oilâ€Based Waterborne Polyurethane Dispersions Cured with an Aziridineâ€Based Crosslinker. Macromolecular Materials and Engineering, 2011, 296, 703-709.	3.6	68
14	Preparation and Properties of Aqueous Castor Oilâ€based Polyurethane–Silica Nanocomposite Dispersions through a Sol–Gel Process. Macromolecular Rapid Communications, 2011, 32, 1331-1337.	3.9	100
15	Recent Advances in Vegetable Oilâ€Based Polyurethanes. ChemSusChem, 2011, 4, 703-717.	6.8	300
16	Soybean Oil–Isosorbideâ€Based Waterborne Polyurethane–Urea Dispersions. ChemSusChem, 2011, 4, 386-391.	6.8	32
17	Ring-opening metathesis polymerization (ROMP) of norbornenyl-functionalized fatty alcohols. Polymer, 2010, 51, 53-61.	3.8	51
18	Castor oil-based thermosets with varied crosslink densities prepared by ring-opening metathesis polymerization (ROMP). Polymer, 2010, 51, 2508-2514.	3.8	89

#	Article	IF	CITATIONS
19	Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green Chemistry, 2010, 12, 1893.	9.0	732
20	Novel Thermosets from the Cationic Copolymerization of Modified Linseed Oils and Dicyclopentadiene. Macromolecular Materials and Engineering, 2009, 294, 590-598.	3.6	26