Raul E Martinez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12113897/publications.pdf

Version: 2024-02-01

22 papers 888 citations

471509 17 h-index 677142 22 g-index

22 all docs 22 docs citations

times ranked

22

1232 citing authors

#	Article	IF	CITATIONS
1	Phytoplankton contributions to the trace-element composition of Precambrian banded iron formations. Bulletin of the Geological Society of America, 2018, 130, 941-951.	3.3	28
2	Effect of Cadmium, Copper and Lead on the Growth of Rice in the Coal Mining Region of Quang Ninh, Cam-Pha (Vietnam). Sustainability, 2018, 10, 1758.	3.2	22
3	Effect of rare earth elements on rice plant growth. Chemical Geology, 2018, 489, 28-37.	3. 3	35
4	Effects of Synechococcus sp. cyanobacteria inert biomass on olivine dissolution: Implications for the application of enhanced weathering methods. Applied Geochemistry, 2017, 84, 162-172.	3.0	5
5	Surface reactivity of the anaerobic phototrophic Fe(II)-oxidizing bacterium Rhodovulum iodosum: Implications for trace metal budgets in ancient oceans and banded iron formations. Chemical Geology, 2016, 442, 113-120.	3.3	12
6	Effects of freshwater Synechococcus sp. cyanobacteria pH buffering on CaCO 3 precipitation: Implications for CO 2 sequestration. Applied Geochemistry, 2016, 75, 76-89.	3.0	13
7	Quantifying the kinetics of olivine dissolution in partially closed and closed batch reactor systems. Chemical Geology, 2014, 367, 1-12.	3.3	14
8	Modeling of rare earth element sorption to the Gram positive Bacillus subtilis bacteria surface. Journal of Colloid and Interface Science, 2014, 413, 106-111.	9.4	37
9	Nickel partitioning in biogenic and abiogenic ferrihydrite: The influence of silica and implications for ancient environments. Geochimica Et Cosmochimica Acta, 2014, 140, 65-79.	3.9	56
10	Interaction of metals and protons with anoxygenic phototrophic bacteria Rhodobacter blasticus. Chemical Geology, 2013, 335, 75-86.	3.3	21
11	Open-pit coal-mining effects on rice paddy soil composition and metal bioavailability to Oryza sativa L. plants in Cam Pha, northeastern Vietnam. Environmental Science and Pollution Research, 2013, 20, 7686-7698.	5. 3	15
12	Proton-Binding Capacity of Staphylococcus aureus Wall Teichoic Acid and Its Role in Controlling Autolysin Activity. PLoS ONE, 2012, 7, e41415.	2.5	71
13	Surface binding site analysis of Ca2+-homoionized clay–humic acid complexes. Journal of Colloid and Interface Science, 2010, 352, 526-534.	9.4	43
14	Do photosynthetic bacteria have a protective mechanism against carbonate precipitation at their surfaces?. Geochimica Et Cosmochimica Acta, 2010, 74, 1329-1337.	3.9	47
15	Modeling lanthanide series binding sites on humic acid. Journal of Colloid and Interface Science, 2009, 330, 45-50.	9.4	36
16	Surface charge and zeta-potential of metabolically active and dead cyanobacteria. Journal of Colloid and Interface Science, 2008, 323, 317-325.	9.4	87
17	Cadmium inhibits both intrinsic and extrinsic apoptotic pathways in renal mesangial cells. American Journal of Physiology - Renal Physiology, 2006, 290, F1074-F1082.	2.7	29
18	Cadmium complexation by bacteriogenic iron oxides from a subterranean environment. Journal of Colloid and Interface Science, 2004, 275, 82-89.	9.4	57

#	Article	IF	CITATIONS
19	Experimental studies of bacteria–iodide adsorption interactions. Chemical Geology, 2004, 212, 229-238.	3.3	31
20	Surface Chemical Heterogeneity of Bacteriogenic Iron Oxides from a Subterranean Environment. Environmental Science & Environme	10.0	28
21	Determination of Intrinsic Bacterial Surface Acidity Constants using a Donnan Shell Model and a Continuous pKa Distribution Method. Journal of Colloid and Interface Science, 2002, 253, 130-139.	9.4	156
22	Chemical Equilibrium Modeling Techniques for the Analysis of High-Resolution Bacterial Metal Sorption Data. Journal of Colloid and Interface Science, 2001, 243, 73-80.	9.4	45