Dennis Dm O'leary

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12108653/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	AXON RETRACTION AND DEGENERATION IN DEVELOPMENT AND DISEASE. Annual Review of Neuroscience, 2005, 28, 127-156.	10.7	735
2	Area Patterning of the Mammalian Cortex. Neuron, 2007, 56, 252-269.	8.1	490
3	Do cortical areas emerge from a protocortex?. Trends in Neurosciences, 1989, 12, 400-406.	8.6	464
4	Ephrin-A5 (AL-1/RAGS) Is Essential for Proper Retinal Axon Guidance and Topographic Mapping in the Mammalian Visual System. Neuron, 1998, 20, 235-243.	8.1	428
5	Topographically Specific Effects of ELF-1 on Retinal Axon Guidance In Vitro and Retinal Axon Mapping In Vivo. Cell, 1996, 86, 755-766.	28.9	424
6	MOLECULAR GRADIENTS AND DEVELOPMENT OF RETINOTOPIC MAPS. Annual Review of Neuroscience, 2005, 28, 327-355.	10.7	397
7	Retinotopic Map Refinement Requires Spontaneous Retinal Waves during a Brief Critical Period of Development. Neuron, 2003, 40, 1147-1160.	8.1	380
8	Development of projection neuron types, axon pathways, and patterned connections of the mammalian cortex. Neuron, 1993, 10, 991-1006.	8.1	347
9	Topographic Mapping from the Retina to the Midbrain Is Controlled by Relative but Not Absolute Levels of EphA Receptor Signaling. Cell, 2000, 102, 77-88.	28.9	338
10	Eph receptors and ephrins in neural development. Current Opinion in Neurobiology, 1999, 9, 65-73.	4.2	312
11	Cortical axons branch to multiple subcortical targets by interstitial axon budding: Implications for target recognition and "waiting periods― Neuron, 1988, 1, 901-910.	8.1	302
12	EphB Forward Signaling Controls Directional Branch Extension and Arborization Required for Dorsal-Ventral Retinotopic Mapping. Neuron, 2002, 35, 475-487.	8.1	281
13	Patterning centers, regulatory genes and extrinsic mechanisms controlling arealization of the neocortex. Current Opinion in Neurobiology, 2002, 12, 14-25.	4.2	267
14	Wlds Protection Distinguishes Axon Degeneration following Injury from Naturally Occurring Developmental Pruning. Neuron, 2006, 50, 883-895.	8.1	254
15	Extension of Long Leading Processes and Neuronal Migration in the Mammalian Brain Directed by the Chemoattractant Netrin-1. Neuron, 1999, 24, 607-622.	8.1	244
16	EMX2 Regulates Sizes and Positioning of the Primary Sensory and Motor Areas in Neocortex by Direct Specification of Cortical Progenitors. Neuron, 2004, 43, 359-372.	8.1	211
17	Genetic regulation of arealization of the neocortex. Current Opinion in Neurobiology, 2008, 18, 90-100.	4.2	208
18	p75NTR Mediates Ephrin-A Reverse Signaling Required for Axon Repulsion and Mapping. Neuron, 2008, 59, 746-758.	8.1	183

DENNIS DM O'LEARY

#	Article	IF	CITATIONS
19	Fgf10 Regulates Transition Period of Cortical Stem Cell Differentiation to Radial Glia Controlling Generation of Neurons and Basal Progenitors. Neuron, 2009, 63, 48-62.	8.1	167
20	Development, critical period plasticity, and adult reorganizations of mammalian somatosensory systems. Current Opinion in Neurobiology, 1994, 4, 535-544.	4.2	161
21	Development of connectional diversity and specificity in the mammalian brain by the pruning of collateral projections. Current Opinion in Neurobiology, 1992, 2, 70-77.	4.2	160
22	Emx1 andEmx2 cooperate to regulate cortical size, lamination, neuronal differentiation, development of cortical efferents, and thalamocortical pathfinding. Journal of Comparative Neurology, 2003, 457, 345-360.	1.6	159
23	Magnitude of Binocular Vision Controlled by Islet-2 Repression of a Genetic Program that Specifies Laterality of Retinal Axon Pathfinding. Cell, 2004, 119, 567-578.	28.9	152
24	A POU Domain Transcription Factor–Dependent Program Regulates Axon Pathfinding in the Vertebrate Visual System. Neuron, 2000, 28, 779-792.	8.1	150
25	Graded and Lamina-Specific Distributions of Ligands of EphB Receptor Tyrosine Kinases in the Developing Retinotectal System. Developmental Biology, 1997, 191, 14-28.	2.0	141
26	Eph receptor tyrosine kinases and their ligands in neural development. Current Opinion in Neurobiology, 1996, 6, 127-133.	4.2	126
27	Sp8 exhibits reciprocal induction with Fgf8 but has an opposing effect on anterior-posterior cortical area patterning. Neural Development, 2007, 2, 10.	2.4	115
28	Occipital cortical neurons with transient pyramidal tract axons extend and maintain collaterals to subcortical but not intracortical targets. Brain Research, 1985, 336, 326-333.	2.2	108
29	A transient pyramidal tract projection from the visual cortex in the hamster and its removal by selective collateral elimination. Developmental Brain Research, 1986, 27, 87-99.	1.7	108
30	Thalamocortical Axons Are Influenced by Chemorepellent and Chemoattractant Activities Localized to Decision Points along Their Path. Developmental Biology, 1999, 208, 430-440.	2.0	100
31	Responses of retinal axons in vivo and in vitro to position-encoding molecules in the embryonic superior colliculus. Neuron, 1992, 9, 977-989.	8.1	99
32	Mechanisms of retinotopic map development: Ephs, ephrins, and spontaneous correlated retinal activity. Progress in Brain Research, 2005, 147, 43-65.	1.4	90
33	Computational modeling of retinotopic map development to define contributions of EphA-ephrinA gradients, axon-axon interactions, and patterned activity. Journal of Neurobiology, 2004, 59, 95-113.	3.6	72
34	Identification and characterization of two novel brain-derived immunoglobulin superfamily members with a unique structural organization. Molecular and Cellular Neurosciences, 2004, 25, 263-274.	2.2	68
35	Potential target genes of EMX2 include Odz/Ten-M and other gene families with implications for cortical patterning. Molecular and Cellular Neurosciences, 2006, 33, 136-149.	2.2	57
36	Plasticity in the Development of Topographic Order in the Mammalian Retinocollicular Projection. Developmental Biology, 1994, 162, 384-393.	2.0	48

#	Article	IF	CITATIONS
37	Influence of position along the medial-lateral axis of the superior colliculus on the topographic targeting and survival of retinal axons. Developmental Brain Research, 1992, 69, 167-172.	1.7	42
38	Novel IgCAM, MDGA1, Expressed in Unique Cortical Area- and Layer-Specific Patterns and Transiently by Distinct Forebrain Populations of Cajal-Retzius Neurons. Cerebral Cortex, 2007, 17, 1531-1541.	2.9	38
39	The specification of sensory cortex: Lessons from cortical transplantation. Experimental Neurology, 1992, 115, 121-126.	4.1	37
40	Cortical Ventricular Zone Progenitors and Their Progeny Maintain Spatial Relationships and Radial Patterning during Preplate Development Indicating an Early Protomap. Cerebral Cortex, 2006, 16, i46-i56.	2.9	35
41	Multiple EphB receptors mediate dorsal–ventral retinotopic mapping via similar bi-functional responses to ephrin-B1. Molecular and Cellular Neurosciences, 2014, 63, 24-30.	2.2	9