
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12102413/publications.pdf Version: 2024-02-01

MARC DAÃURON

#	Article	IF	CITATIONS
1	Basophils from allergic patients are neither hyperresponsive to activation signals nor hyporesponsive to inhibition signals. Journal of Allergy and Clinical Immunology, 2018, 142, 1548-1557.	2.9	10
2	Fc Receptors and Fc Receptor-Like Molecules within the Immunoreceptor Family. , 2016, , 360-370.		1
3	Trans-inhibition of activation and proliferation signals by Fc receptors in mast cells and basophils. Science Signaling, 2016, 9, ra126.	3.6	31
4	Individual strains ofLactobacillus paracaseidifferentially inhibit human basophil and mouse mast cell activation. Immunity, Inflammation and Disease, 2016, 4, 289-299.	2.7	10
5	Innate myeloid cells under the control of adaptive immunity: the example of mast cells and basophils. Current Opinion in Immunology, 2016, 38, 101-108.	5.5	24
6	Immunoglobulin Receptors and Inflammation. , 2016, , 612-619.		0
7	<i>Science Signaling</i> Podcast for 20 December 2016: Trans-inhibition by Fc receptors. Science Signaling, 2016, 9, c24.	3.6	0
8	FRT – FONDATION RENE TOURAINE. Experimental Dermatology, 2015, 24, 803-820.	2.9	0
9	The Milieu Intérieur study — An integrative approach for study of human immunological variance. Clinical Immunology, 2015, 157, 277-293.	3.2	71
10	Fc Receptors as Adaptive Immunoreceptors. Current Topics in Microbiology and Immunology, 2014, 382, 131-164.	1.1	37
11	Signaling Shifts in Allergy Responses. Science, 2014, 343, 982-983.	12.6	2
12	Coincidence detection of antibodies and interferon for sensing microbial context. Nature Immunology, 2014, 15, 316-317.	14.5	1
13	Antibody-dependent infection of human macrophages by severe acute respiratory syndrome coronavirus. Virology Journal, 2014, 11, 82.	3.4	218
14	Functional Analysis via Standardized Whole-Blood Stimulation Systems Defines the Boundaries of a Healthy Immune Response to Complex Stimuli. Immunity, 2014, 40, 436-450.	14.3	192
15	Computational Modeling of the Main Signaling Pathways Involved in Mast Cell Activation. Current Topics in Microbiology and Immunology, 2014, 382, 69-93.	1.1	22
16	Phosphatase regulation of immunoreceptor signaling in T cells, B cells and mast cells. Current Opinion in Immunology, 2013, 25, 313-320.	5.5	12
17	Proteomic Analysis of the SH2Domain-containing Leukocyte Protein of 76 kDa (SLP76) Interactome. Molecular and Cellular Proteomics, 2013, 12, 2874-2889.	3.8	11
18	Quorum Sensing Contributes to Activated IgM-Secreting B Cell Homeostasis. Journal of Immunology, 2013, 190, 106-114.	0.8	25

#	Article	IF	CITATIONS
19	The high-affinity human IgG receptor FcÎ ³ RI (CD64) promotes IgG-mediated inflammation, anaphylaxis, and antitumor immunotherapy. Blood, 2013, 121, 1563-1573.	1.4	120
20	Immunoglobulin Receptors and Inflammation. , 2013, , 1-8.		0
21	Cutting Edge: FcγRIII (CD16) and FcγRI (CD64) Are Responsible for Anti-Glycoprotein 75 Monoclonal Antibody TA99 Therapy for Experimental Metastatic B16 Melanoma. Journal of Immunology, 2012, 189, 5513-5517.	0.8	34
22	FcÎ ³ Receptors Inhibit Mouse and Human Basophil Activation. Journal of Immunology, 2012, 189, 2995-3006.	0.8	118
23	Human FcÎ ³ RIIA induces anaphylactic and allergic reactions. Blood, 2012, 119, 2533-2544.	1.4	113
24	The interactions of therapeutic antibodies with Fc receptors. Immunology Letters, 2012, 143, 20-27.	2.5	23
25	Antibodies against growth factor receptors can inhibit the proliferation of transformed cells via a cis-interaction with inhibitory FcR. Immunology Letters, 2012, 143, 28-33.	2.5	3
26	Mast Cells and Company. Frontiers in Immunology, 2012, 3, 16.	4.8	65
27	Mouse and human neutrophils induce anaphylaxis. Journal of Clinical Investigation, 2011, 121, 1484-1496.	8.2	249
28	Cutting Edge: The Murine High-Affinity IgG Receptor FcÎ ³ RIV Is Sufficient for Autoantibody-Induced Arthritis. Journal of Immunology, 2011, 186, 1899-1903.	0.8	85
29	Anti-Severe Acute Respiratory Syndrome Coronavirus Spike Antibodies Trigger Infection of Human Immune Cells via a pH- and Cysteine Protease-Independent FcγR Pathway. Journal of Virology, 2011, 85, 10582-10597.	3.4	294
30	A Strain of <i>Lactobacillus casei</i> Inhibits the Effector Phase of Immune Inflammation. Journal of Immunology, 2011, 187, 2646-2655.	0.8	36
31	C5a receptor enables participation of mast cells in immune complex arthritis independently of FcÎ ³ receptor modulation. Arthritis and Rheumatism, 2010, 62, 3322-3333.	6.7	35
32	Human Basophils Express the Glycosylphosphatidylinositol-Anchored Low-Affinity IgG Receptor FcÎ ³ RIIIB (CD16B). Journal of Immunology, 2009, 182, 2542-2550.	0.8	101
33	Ligand Binding but Undetected Functional Response of FcR after Their Capture by T Cells via Trogocytosis. Journal of Immunology, 2009, 183, 6102-6113.	0.8	19
34	Specificity and affinity of human Fcl ³ receptors and their polymorphic variants for human IgG subclasses. Blood, 2009, 113, 3716-3725.	1.4	1,218
35	Immunoreceptor tyrosineâ€based inhibition motifs: a quest in the past and future. Immunological Reviews, 2008, 224, 11-43.	6.0	315
36	Non-T Cell Activation Linker Promotes Mast Cell Survival by Dampening the Recruitment of SHIP1 by Linker for Activation of T Cells. Journal of Immunology, 2008, 180, 3689-3698.	0.8	35

#	Article	IF	CITATIONS
37	FcγRIV is a mouse IgE receptor that resembles macrophage FcεRI in humans and promotes IgE-induced lung inflammation. Journal of Clinical Investigation, 2008, 118, 3738-3750.	8.2	132
38	Peritoneal Cell-Derived Mast Cells: An In Vitro Model of Mature Serosal-Type Mouse Mast Cells. Journal of Immunology, 2007, 178, 6465-6475.	0.8	130
39	The mast cell IgG receptors and their roles in tissue inflammation. Immunological Reviews, 2007, 217, 206-221.	6.0	128
40	The SH2 domain-containing inositol 5-phosphatase SHIP1 is recruited to the intracytoplasmic domain of human Fcl ³ RIIB and is mandatory for negative regulation of B cell activation. Immunology Letters, 2006, 104, 156-165.	2.5	30
41	The Engagement of Activating Fcl ³ Rs Inhibits Primate Lentivirus Replication in Human Macrophages. Journal of Immunology, 2006, 177, 6291-6300.	0.8	33
42	Negative Signaling in Fc Receptor Complexes. Advances in Immunology, 2006, 89, 39-86.	2.2	84
43	Regulation of allergy by Fc receptors. Current Opinion in Immunology, 2005, 17, 662-669.	5.5	89
44	Experimental Infection with Trypanosoma cruzi Increases the Population of CD8+, but not CD4+, Immunoglobulin G Fc Receptor-Positive T Lymphocytes. Infection and Immunity, 2005, 73, 5048-5052.	2.2	7
45	Dynamic Interactions of Fcγ Receptor IIB with Filamin-Bound SHIP1 Amplify Filamentous Actin-Dependent Negative Regulation of Fcε Receptor I Signaling. Journal of Immunology, 2005, 174, 1365-1373.	0.8	45
46	Two Distinct Tyrosine-based Motifs Enable the Inhibitory Receptor FcÎ ³ RIIB to Cooperatively Recruit the Inositol Phosphatases SHIP1/2 and the Adapters Grb2/Grap. Journal of Biological Chemistry, 2004, 279, 51931-51938.	3.4	45
47	Linker for Activation of T Cells Integrates Positive and Negative Signaling in Mast Cells. Journal of Immunology, 2004, 173, 5086-5094.	0.8	48
48	Negative regulation of mast cell proliferation by Fcl ³ RIIB. Molecular Immunology, 2002, 38, 1295-1299.	2.2	40
49	Src Homology 2 Domain-containing Inositol 5-Phosphatase 1 Mediates Cell Cycle Arrest by FcγRIIB. Journal of Biological Chemistry, 2001, 276, 30381-30391.	3.4	27
50	Insufficient Phosphorylation Prevents Fc ^î ³RIIB from Recruiting the SH2 Domain-containing Protein-tyrosine Phosphatase SHP-1. Journal of Biological Chemistry, 2001, 276, 6327-6336.	3.4	43
51	SHIP1-mediated negative regulation of cell activation and proliferation by Fcl ³ RIIB. , 2001, , 141-152.		0
52	Mutational Analysis Reveals Multiple Distinct Sites Within FcÎ ³ Receptor IIB That Function in Inhibitory Signaling. Journal of Immunology, 2000, 165, 4453-4462.	0.8	60
53	Transduction du signal par les immunorécepteurs. Revue Francaise Des Laboratoires, 2000, 2000, 29-37.	0.0	1
54	The SH2 domain containing inositol 5-phosphatase SHIP2 associates to the immunoreceptor tyrosine-based inhibition motif of FcγRIIB in B cells under negative signaling. Immunology Letters, 2000, 72, 7-15.	2.5	56

#	Article	IF	CITATIONS
55	Antibody-Dependent Induction of Type I Interferons by Poliovirus in Human Mononuclear Blood Cells Requires the Type II Fcl ³ Receptor (CD32). Virology, 2000, 278, 86-94.	2.4	58
56	The Pseudo-immunoreceptor Tyrosine-based Activation Motif of CD5 Mediates Its Inhibitory Action on B-cell Receptor Signaling. Journal of Biological Chemistry, 2000, 275, 548-556.	3.4	60
57	Molecular Basis of the Recruitment of the SH2 Domain-containing Inositol 5-Phosphatases SHIP1 and SHIP2 by Fcl ³ RIIB. Journal of Biological Chemistry, 2000, 275, 37357-37364.	3.4	84
58	The RasGAP-Binding Protein p62dok Is a Mediator of Inhibitory FcÎ ³ RIIB Signals in B Cells. Immunity, 2000, 12, 347-358.	14.3	235
59	Immunoreceptor Tyrosine-based Inhibition Motif-dependent Negative Regulation of Mast Cell Activation and Proliferation. , 2000, , 185-193.		0
60	Signal Regulatory Proteins Negatively Regulate Immunoreceptor-dependent Cell Activation. Journal of Biological Chemistry, 1999, 274, 32493-32499.	3.4	61
61	Fc Receptors. , 1999, , 43-122.		2
62	Reconstituted Killer Cell Inhibitory Receptors for Major Histocompatibility Complex Class I Molecules Control Mast Cell Activation Induced via Immunoreceptor Tyrosine-based Activation Motifs. Journal of Biological Chemistry, 1997, 272, 8989-8996.	3.4	111
63	Negative Regulation of Mast Cell Activation by Receptors for IgG. International Archives of Allergy and Immunology, 1997, 113, 138-141.	2.1	35
64	Structural Bases of Fcl ³ R Functions. International Reviews of Immunology, 1997, 16, 1-27.	3.3	39
65	F <scp>c</scp> RECEPTOR BIOLOGY. Annual Review of Immunology, 1997, 15, 203-234.	21.8	1,114
66	ITAM et ITIM: un subtil équilibre. Biofutur, 1997, 1997, 57-59.	0.0	4
67	Immunoreceptor tyrosine-based inhibition motifs. Trends in Immunology, 1997, 18, 286-291.	7.5	361
68	Differential association of phosphatases with hematopoietic co-receptors bearing immunoreceptor tyrosine-based inhibition motifs. European Journal of Immunology, 1997, 27, 1994-2000.	2.9	133
69	FcÎ ³ R as Negative Coreceptors. , 1997, , 89-116.		0
70	Impaired IgG-Dependent Anaphylaxis and Arthus Reaction in FcγRIII (CD16) Deficient Mice. Immunity, 1996, 5, 181-188.	14.3	432
71	Selective in vivo recruitment of the phosphatidylinositol phosphatase SHIP by phosphorylated FcÎ ³ RIIB during negative regulation of IgE-dependent mouse mast cell activation. Immunology Letters, 1996, 54, 83-91.	2.5	121
72	Building up the family of ITIM-bearing negative coreceptors. Immunology Letters, 1996, 54, 73-76.	2.5	19

#	Article	IF	CITATIONS
73	Regulation of tyrosine-containing activation motif-dependent cell signalling by FcÎ ³ RII. Immunology Letters, 1995, 44, 119-123.	2.5	20
74	The same tyrosine-based inhibition motif, in the intra-cytoplasmic domain of FcγRIIB, regulates negatively BCR-, TCR-, and FcR-dependent cell activation. Immunity, 1995, 3, 635-646.	14.3	425
75	Trypanosoma cruzi infection in mice enhances the membrane expression of low-affinity Fc receptors for IgG and the release of their soluble forms. Parasite Immunology, 1993, 15, 539-546.	1.5	18
76	Distinct intracytoplasmic sequences are required for endocytosis and phagocytosis via murine FcÎ ³ RII in mast cells. International Immunology, 1993, 5, 1393-1401.	4.0	44
77	Sequence and length heterogeneity of α Fcγ R transcripts in AKR mice. Molecular Immunology, 1992, 29, 353-361.	2.2	2
78	Murine FcÎ ³ RII and III in Mast Cell Activation. Immunobiology, 1992, 185, 159-174.	1.9	9
79	Structural Bases of Fcgamma Receptor Functions. Immunological Reviews, 1992, 125, 49-76.	6.0	137
80	Regulation of the expression of murine α- and β-FcγR genes. Immunologic Research, 1992, 11, 191-202.	2.9	0
81	21.1.1, A novel activation marker of T and B cells. Molecular Immunology, 1991, 28, 417-426.	2.2	5
82	Fc receptors, or the elective affinities of adhesion molecules. Immunology Letters, 1991, 27, 175-181.	2.5	4
83	Soluble FcÎ ³ receptors II (FcÎ ³ RII) are generated by cleavage of membrane FcÎ ³ RII. European Journal of Immunology, 1991, 21, 231-234.	2.9	45
84	Identification of Fcl̂³RIIa, a product of the murine l̂±Fcl̂³R gene. European Journal of Immunology, 1990, 20, 897-901.	2.9	6
85	The murine α Fcγ R gene product: identification, expression and regulation. Molecular Immunology, 1990, 27, 1181-1188.	2.2	12
86	Murine Type II FcÎ ³ Receptors and IgG-Binding Factors. Chemical Immunology and Allergy, 1989, 47, 21-40.	1.7	29
87	Identification of the FcγRII-related component of murine IgG-BF. Molecular Immunology, 1989, 26, 107-114.	2.2	7
88	Molecular mechanisms regulating the expression of murine T-cell FcÎ ³ receptor II. Molecular Immunology, 1988, 25, 1143-1150.	2.2	7
89	The Isotypic Circuit: Immunoglobulins, Fc Receptors and Immunoglobulin Binding Factors. International Reviews of Immunology, 1987, 2, 221-240.	3.3	22
90	Heterogeneity of Murine IgG-Binding Factors (IgG-BF): Relation to Major Histocompatibility Complex Class II Antigens. , 1987, , 383-404.		1

6

#	Article	IF	CITATIONS
91	The Occurence, Structural and Functional Properties of Immunoglobulin Fc Receptors on Murine Neoplastic Cells. International Reviews of Immunology, 1986, 1, 237-271.	3.3	18
92	Bases for an isotypic network. Molecular Immunology, 1986, 23, 1141-1148.	2.2	21
93	Molecular heterogeneity of murine IgG-BF. Molecular Immunology, 1986, 23, 1183-1191.	2.2	9
94	2.4G2, a monoclonal antibody to macrophage FcÎ ³ receptors, reacts with murine T cell FcÎ ³ receptors and IgG-binding factors. European Journal of Immunology, 1986, 16, 1545-1550.	2.9	37
95	Receptors for immunoglobulin isotypes (FcR) on murine T cells: I. Multiple FcR expression on T lymphocytes and hybridoma T cell clones. European Journal of Immunology, 1985, 15, 662-667.	2.9	33
96	Receptors for immunoglobulin isotypes (FcR) on murine T cells: II. Multiple FcR induction on hybridoma T cell clones. European Journal of Immunology, 1985, 15, 668-674.	2.9	30
97	Anaphylactic properties of mouse monoclonal IgG2a antibodies. Cellular Immunology, 1982, 70, 27-40.	3.0	25
98	Mast cell membrane antigens and Fc receptors in anaphylaxis. Cellular Immunology, 1980, 49, 178-189.	3.0	62
99	H-2 antigens, on mast cell membrane, as target antigens for anaphylactic degranulation. Cellular Immunology, 1978, 37, 467-472.	3.0	23