
Michael D Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12099314/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhibitors of Strand Transfer That Prevent Integration and Inhibit HIV-1 Replication in Cells. Science, 2000, 287, 646-650.	12.6	1,088
2	Raltegravir with Optimized Background Therapy for Resistant HIV-1 Infection. New England Journal of Medicine, 2008, 359, 339-354.	27.0	699
3	Safety and efficacy of raltegravir-based versus efavirenz-based combination therapy in treatment-naive patients with HIV-1 infection: a multicentre, double-blind randomised controlled trial. Lancet, The, 2009, 374, 796-806.	13.7	621
4	Subgroup and Resistance Analyses of Raltegravir for Resistant HIV-1 Infection. New England Journal of Medicine, 2008, 359, 355-365.	27.0	498
5	Rapid and Durable Antiretroviral Effect of the HIV-1 Integrase Inhibitor Raltegravir as Part of Combination Therapy in Treatment-Naive Patients With HIV-1 Infection. Journal of Acquired Immune Deficiency Syndromes (1999), 2007, 46, 125-133.	2.1	406
6	A naphthyridine carboxamide provides evidence for discordant resistance between mechanistically identical inhibitors of HIV-1 integrase. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11233-11238.	7.1	328
7	Traumatic Anterior Atlanto-occipital Dislocation. Neurosurgery, 1979, 4, 12-17.	1.1	326
8	Low-Frequency HIV-1 Drug Resistance Mutations and Risk of NNRTI-Based Antiretroviral Treatment Failure. JAMA - Journal of the American Medical Association, 2011, 305, 1327.	7.4	315
9	Integrase Inhibitors and Cellular Immunity Suppress Retroviral Replication in Rhesus Macaques. Science, 2004, 305, 528-532.	12.6	283
10	Switch to a raltegravir-based regimen versus continuation of a lopinavir-ritonavir-based regimen in stable HIV-infected patients with suppressed viraemia (SWITCHMRK 1 and 2): two multicentre, double-blind, randomised controlled trials. Lancet, The, 2010, 375, 396-407.	13.7	276
11	FLOG: A system to select ?quasi-flexible? ligands complementary to a receptor of known three-dimensional structure. Journal of Computer-Aided Molecular Design, 1994, 8, 153-174.	2.9	243
12	Raltegravir Versus Efavirenz Regimens in Treatment-Naive HIV-1–Infected Patients: 96-Week Efficacy, Durability, Subgroup, Safety, and Metabolic Analyses. Journal of Acquired Immune Deficiency Syndromes (1999), 2010, 55, 39-48.	2.1	211
13	Coupling of Human Immunodeficiency Virus Type 1 Fusion to Virion Maturation: a Novel Role of the gp41 Cytoplasmic Tail. Journal of Virology, 2004, 78, 3429-3435.	3.4	203
14	Addition of a cholesterol group to an HIV-1 peptide fusion inhibitor dramatically increases its antiviral potency. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5801-5806.	7.1	192
15	Raltegravir once daily or twice daily in previously untreated patients with HIV-1: a randomised, active-controlled, phase 3 non-inferiority trial. Lancet Infectious Diseases, The, 2011, 11, 907-915.	9.1	175
16	CCR5, CXCR4, and CD4 Are Clustered and Closely Apposed on Microvilli of Human Macrophages and T Cells. Journal of Virology, 2001, 75, 3779-3790.	3.4	149
17	Inhibition of HIV-1 Ribonuclease H by a Novel Diketo Acid, 4-[5-(Benzoylamino)thien-2-yl]-2,4-dioxobutanoic Acid. Journal of Biological Chemistry, 2003, 278, 2777-2780.	3.4	148
18	A human monoclonal antibody neutralizes diverse HIV-1 isolates by binding a critical gp41 epitope. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14759-14764.	7.1	136

MICHAEL D MILLER

#	Article	IF	CITATIONS
19	PD-1 Blockade in Rhesus Macaques: Impact on Chronic Infection and Prophylactic Vaccination. Journal of Immunology, 2009, 182, 980-987.	0.8	126
20	Structural Analysis of the Epitope of the Anti-HIV Antibody 2F5 Sheds Light into Its Mechanism of Neutralization and HIV Fusion. Journal of Molecular Biology, 2003, 330, 1101-1115.	4.2	125
21	Structural basis for HIV-1 neutralization by a gp41 fusion intermediate–directed antibody. Nature Structural and Molecular Biology, 2006, 13, 740-747.	8.2	122
22	Enhancement of α-Helicity in the HIV-1 Inhibitory Peptide DP178 Leads to an Increased Affinity for Human Monoclonal Antibody 2F5 but Does Not Elicit Neutralizing Responses in Vitro. Journal of Biological Chemistry, 2002, 277, 45811-45820.	3.4	106
23	HIV-1 Reverse Transcriptase Plus-strand Initiation Exhibits Preferential Sensitivity to Non-nucleoside Reverse Transcriptase Inhibitors in Vitro. Journal of Biological Chemistry, 2007, 282, 8005-8010.	3.4	104
24	Impact of Primary Elvitegravir Resistance-Associated Mutations in HIV-1 Integrase on Drug Susceptibility and Viral Replication Fitness. Antimicrobial Agents and Chemotherapy, 2013, 57, 2654-2663.	3.2	104
25	<i>In Vitro</i> Characterization of MK-1439, a Novel HIV-1 Nonnucleoside Reverse Transcriptase Inhibitor. Antimicrobial Agents and Chemotherapy, 2014, 58, 1652-1663.	3.2	100
26	Covalent stabilization of coiled coils of the HIV gp41 N region yields extremely potent and broad inhibitors of viral infection. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12903-12908.	7.1	98
27	Nef Does Not Affect the Efficiency of Human Immunodeficiency Virus Type 1 Fusion with Target Cells. Journal of Virology, 2003, 77, 10645-10650.	3.4	90
28	<i>In Vitro</i> Resistance Selection with Doravirine (MK-1439), a Novel Nonnucleoside Reverse Transcriptase Inhibitor with Distinct Mutation Development Pathways. Antimicrobial Agents and Chemotherapy, 2015, 59, 590-598.	3.2	84
29	<i>In Vitro</i> Virology Profile of Tenofovir Alafenamide, a Novel Oral Prodrug of Tenofovir with Improved Antiviral Activity Compared to That of Tenofovir Disoproxil Fumarate. Antimicrobial Agents and Chemotherapy, 2015, 59, 5909-5916.	3.2	82
30	A Critical Site in the Core of the CCR5 Chemokine Receptor Required for Binding and Infectivity of Human Immunodeficiency Virus Type 1. Journal of Biological Chemistry, 1999, 274, 1905-1913.	3.4	81
31	Retroviral cDNA Integration: Stimulation by HMG I Family Proteins. Journal of Virology, 2000, 74, 10965-10974.	3.4	80
32	Relationship between minority nonnucleoside reverse transcriptase inhibitor resistance mutations, adherence, and the risk of virologic failure. Aids, 2012, 26, 185-192.	2.2	76
33	Doravirine Suppresses Common Nonnucleoside Reverse Transcriptase Inhibitor-Associated Mutants at Clinically Relevant Concentrations. Antimicrobial Agents and Chemotherapy, 2016, 60, 2241-2247.	3.2	76
34	Dissecting the Effects of DNA Polymerase and Ribonuclease H Inhibitor Combinations on HIV-1 Reverse-Transcriptase Activities. Biochemistry, 2005, 44, 1595-1606.	2.5	75
35	The HIV-1 Reverse Transcriptase M184I Mutation Enhances the E138K-Associated Resistance to Rilpivirine and Decreases Viral Fitness. Journal of Acquired Immune Deficiency Syndromes (1999), 2012, 59, 47-54.	2.1	68
36	In vitro resistance selections using elvitegravir, raltegravir, and two metabolites of elvitegravir M1 and M4. Antiviral Research, 2012, 93, 288-296.	4.1	66

3

#	Article	IF	CITATIONS
37	Vaccination with peptide mimetics of the gp41 prehairpin fusion intermediate yields neutralizing antisera against HIV-1 isolates. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10655-10660.	7.1	65
38	The triple combination of tenofovir, emtricitabine and efavirenz shows synergistic anti-HIV-1 activity in vitro: a mechanism of action study. Retrovirology, 2009, 6, 44.	2.0	56
39	Impact of Minority Nonnucleoside Reverse Transcriptase Inhibitor Resistance Mutations on Resistance Genotype After Virologic Failure. Journal of Infectious Diseases, 2013, 207, 893-897.	4.0	53
40	Murine T Cells Potently Restrict Human Immunodeficiency Virus Infection. Journal of Virology, 2004, 78, 12537-12547.	3.4	52
41	Potent and selective HIV-1 ribonuclease H inhibitors based on a 1-hydroxy-1,8-naphthyridin-2(1H)-one scaffold. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 6754-6757.	2.2	52
42	Analysis of Low-Frequency Mutations Associated with Drug Resistance to Raltegravir before Antiretroviral Treatment. Antimicrobial Agents and Chemotherapy, 2011, 55, 1114-1119.	3.2	49
43	Altering Expression Levels of Human Immunodeficiency Virus Type 1 gp120-gp41 Affects Efficiency but Not Kinetics of Cell-Cell Fusion. Journal of Virology, 2002, 76, 3522-3533.	3.4	48
44	Progress Towards the Development of a HIV-1 gp41-Directed Vaccine. Current HIV Research, 2004, 2, 193-204.	0.5	45
45	Raltegravir: the first HIVâ€1 integrase strand transfer inhibitor in the HIV armamentarium. Annals of the New York Academy of Sciences, 2011, 1222, 83-89.	3.8	44
46	Intravirion Generation of the C-Terminal Core Domain of HIV-1 Nef by the HIV-1 Protease Is Insufficient to Enhance Viral Infectivity. Virology, 1997, 234, 215-225.	2.4	39
47	Antagonists of human CCR5 receptor containing 4-(pyrazolyl)piperidine side chains. Part 1: Discovery and SAR study of 4-pyrazolylpiperidine side chains. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 935-939.	2.2	39
48	Potential New Therapies for the Treatment of HIV-1 Infection. Annual Review of Medicine, 2002, 53, 541-555.	12.2	38
49	HIV resistance to the fusion inhibitor enfuvirtide: mechanisms and clinical implications. Drug Resistance Updates, 2004, 7, 89-95.	14.4	38
50	Antagonists of human CCR5 receptor containing 4-(pyrazolyl)piperidine side chains. Part 2: Discovery of potent, selective, and orally bioavailable compounds. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 941-945.	2.2	37
51	Characterization of HIV-1 Resistance to Tenofovir AlafenamideIn Vitro. Antimicrobial Agents and Chemotherapy, 2015, 59, 5917-5924.	3.2	37
52	Antagonists of human CCR5 receptor containing 4-(pyrazolyl)piperidine side chains. Part 3: SAR studies on the benzylpyrazole segment. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 947-952.	2.2	36
53	Distinct Mutation Pathways of Non-Subtype B HIV-1 during <i>In Vitro</i> Resistance Selection with Nonnucleoside Reverse Transcriptase Inhibitors. Antimicrobial Agents and Chemotherapy, 2010, 54, 4812-4824.	3.2	35
54	Antiviral Activity of MK-4965, a Novel Nonnucleoside Reverse Transcriptase Inhibitor. Antimicrobial Agents and Chemotherapy, 2009, 53, 2424-2431.	3.2	32

MICHAEL D MILLER

#	Article	IF	CITATIONS
55	Development of Elvitegravir Resistance and Linkage of Integrase Inhibitor Mutations with Protease and Reverse Transcriptase Resistance Mutations. PLoS ONE, 2012, 7, e40514.	2.5	31
56	Low pH Is Required for Avian Sarcoma and Leukosis Virus Env-Dependent Viral Penetration into the Cytosol and Not for Viral Uncoating. Journal of Virology, 2004, 78, 10433-10441.	3.4	30
57	Switching between raltegravir resistance pathways analyzed by deep sequencing. Aids, 2011, 25, 1951-1959.	2.2	30
58	Discovery of 2-Pyridinone Aminals: A Prodrug Strategy to Advance a Second Generation of HIV-1 Integrase Strand Transfer Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 8154-8165.	6.4	30
59	Low-Level K65R Mutation in HIV-1 Reverse Transcriptase of Treatment-Experienced Patients Exposed to Abacavir or Didanosine. Journal of Acquired Immune Deficiency Syndromes (1999), 2007, 46, 174-180.	2.1	28
60	A potent and orally active HIV-1 integrase inhibitor. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1392-1398.	2.2	27
61	Clinical efficacy of raltegravir against B and non-B subtype HIV-1 in phase III clinical studies. Aids, 2011, 25, 1365-1369.	2.2	27
62	Lack of impact of pre-existing T97A HIV-1 integrase mutation on integrase strand transfer inhibitor resistance and treatment outcome. PLoS ONE, 2017, 12, e0172206.	2.5	24
63	The Combined Anti-HIV-1 Activities of Emtricitabine and Tenofovir plus the Integrase Inhibitor Elvitegravir or Raltegravir Show High Levels of Synergy <i>In Vitro</i> . Antimicrobial Agents and Chemotherapy, 2014, 58, 6145-6150.	3.2	23
64	Resistance Analyses of Integrase Strand Transfer Inhibitors within Phase 3 Clinical Trials of Treatment-Naive Patients. Viruses, 2014, 6, 2858-2879.	3.3	22
65	Syntheses and SAR studies of 4-(heteroarylpiperdin-1-yl-methyl)-pyrrolidin-1-yl-acetic acid antagonists of the human CCR5 chemokine receptor. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 3419-3424.	2.2	21
66	10-Hydroxy-7,8-dihydropyrazino[1′,2′:1,5]pyrrolo[2,3-d]pyridazine-1,9(2H,6H)-diones: Potent, orally bioavailable HIV-1 integrase strand-transfer inhibitors with activity against integrase mutants. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4581-4583.	2.2	20
67	Affinity maturation and characterization of a human monoclonal antibody against HIV-1 gp41. MAbs, 2009, 1, 462-474.	5.2	20
68	Week 144 Resistance Analysis of Elvitegravir/Cobicistat/Emtricitabine/Tenofovir DF versus Efavirenz/Emtricitabine/Tenofovir DF in Antiretroviral-Naive Patients. Antiviral Therapy, 2015, 20, 317-327.	1.0	19
69	Monitoring the development of non-nucleoside reverse transcriptase inhibitor-associated resistant HIV-1 using an electrochemiluminescence-based reverse transcriptase polymerase assay. Analytical Biochemistry, 2008, 374, 121-132.	2.4	17
70	Analysis of early resistance development at the first failure timepoint in elvitegravir/cobicistat/emtricitabine/tenofovir disoproxil fumarate-treated patients. Journal of Antimicrobial Chemotherapy, 2015, 70, 2632-2638.	3.0	17
71	Effect of Nucleoside and Nucleotide Reverse Transcriptase Inhibitors of HIV on Endogenous Nucleotide Pools. Antiviral Therapy, 2008, 13, 789-797.	1.0	17
72	Mechanistic Study of Common Non-Nucleoside Reverse Transcriptase Inhibitor-Resistant Mutations with K103N and Y181C Substitutions. Viruses, 2016, 8, 263.	3.3	16

MICHAEL D MILLER

#	Article	IF	CITATIONS
73	Syntheses and biological evaluation of 5-(piperidin-1-yl)-3-phenyl-pentylsulfones as CCR5 antagonists. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 3589-3593.	2.2	14
74	Derivatives of Mesoxalic Acid Block Translocation of HIV-1 Reverse Transcriptase. Journal of Biological Chemistry, 2015, 290, 1474-1484.	3.4	14
75	Antiviral Activity and <i>In Vitro</i> Mutation Development Pathways of MK-6186, a Novel Nonnucleoside Reverse Transcriptase Inhibitor. Antimicrobial Agents and Chemotherapy, 2012, 56, 3324-3335.	3.2	12
76	Automated high-throughput purification of antibody fragments to facilitate evaluation in functional and kinetic based assays. Journal of Immunological Methods, 2007, 322, 94-103.	1.4	11
77	Assessment of the susceptibility of mutant HIV-1 to antiviral agents. Journal of Virological Methods, 2010, 165, 230-237.	2.1	11
78	Synthesis and biological evaluation of 5R- and 5S-methyl substituted d- and l-configuration 1,3-dioxolane nucleoside analogs. Bioorganic and Medicinal Chemistry, 2004, 12, 6237-6247.	3.0	10
79	Resistance Mutations outside the Integrase Coding Region Have an Effect on Human Immunodeficiency Virus Replicative Fitness but Do Not Affect Its Susceptibility to Integrase Strand Transfer Inhibitors. PLoS ONE, 2013, 8, e65631.	2.5	10
80	Purification of untagged HIV-1 reverse transcriptase by affinity chromatography. Protein Expression and Purification, 2010, 71, 231-239.	1.3	9
81	Bulged DNA substrates for identifying poxvirus resolvase inhibitors. Nucleic Acids Research, 2012, 40, e124-e124.	14.5	5
82	Drug Susceptibility and Viral Fitness of HIV-1 with Integrase Strand Transfer Inhibitor Resistance Substitution Q148R or N155H in Combination with Nucleoside/Nucleotide Reverse Transcriptase Inhibitor Resistance Substitutions. Antimicrobial Agents and Chemotherapy, 2016, 60, 757-765.	3.2	5
83	Identification of novel bifunctional HIV-1 reverse transcriptase inhibitors. Journal of Antimicrobial Chemotherapy, 2018, 73, 109-117.	3.0	5
84	Baseline Antiretroviral Resistance Mutations and Treatment-Emergent Resistance in HIV-1 RNA-Suppressed Patients Switching to EVG/COBI/FTC/TDF or Continuing on Their PI-, NNRTI-, or RAL-Based Regimen. Journal of Acquired Immune Deficiency Syndromes (1999), 2015, 68, 519-526.	2.1	4
85	Week 48 resistance analysis of Elvitegravir/Cobicistat/Emtricitabine/Tenofovir DF versus Atazanavir + Ritonavir + Emtricitabine/Tenofovir DF in HIV-1 infected women (WAVES study GS-US-236-0128). HIV Clinical Trials, 2017, 18, 164-173.	2.0	4
86	Small Molecule Mimetics of an HIV-1 gp41 Fusion Intermediate as Vaccine Leads. Journal of Biological Chemistry, 2010, 285, 40604-40611.	3.4	3
87	A Cell-Based Strategy To Assess Intrinsic Inhibition Efficiencies of HIV-1 Reverse Transcriptase Inhibitors. Antimicrobial Agents and Chemotherapy, 2015, 59, 838-848.	3.2	3
88	Synthetic Peptide Vaccines: The Quest to Develop Peptide Vaccines for Influenza, HIV and Alzheimer's Disease. Advances in Experimental Medicine and Biology, 2009, 611, 121-123.	1.6	2
89	New Developments in HIV Therapeutics. Annual Reports in Medicinal Chemistry, 2005, 40, 291-300.	0.9	1
90	HIV-1 Proviral Sequence and Treatment Outcome of Virologically Suppressed Patients Switching to Coformulated Elvitegravir/Cobicistat/Emtricitabine/Tenofovir Disoproxil Fumarate. Journal of Acquired Immune Deficiency Syndromes (1999), 2018, 79, e47-e51.	2.1	0

#	Article	IF	CITATIONS
91	A Strategy for Selectively Shielding Portions of a Peptide/Protein from Immune Response while Maintaining Immunogenicity of Contiguous Epitopes. Advances in Experimental Medicine and Biology, 2009, 611, 359-360.	1.6	Ο