
Pranjal Kalita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12098412/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Waste to value addition: Utilization of waste Brassica nigra plant derived novel green heterogeneous base catalyst for effective synthesis of biodiesel. Journal of Cleaner Production, 2019, 239, 118112.	9.3	121
2	Synergistic role of acid sites in the Ce-enhanced activity of mesoporous Ce–Al-MCM-41 catalysts in alkylation reactions: FTIR and TPD-ammonia studies. Journal of Catalysis, 2007, 245, 338-347.	6.2	119
3	Highly efficient renewable heterogeneous base catalyst derived from waste Sesamum indicum plant for synthesis of biodiesel. Renewable Energy, 2020, 151, 295-310.	8.9	88
4	Utilization of renewable and sustainable basic heterogeneous catalyst from Heteropanax fragrans (Kesseru) for effective synthesis of biodiesel from Jatropha curcas oil. Fuel, 2021, 286, 119357.	6.4	66
5	Waste Musa paradisiaca plant: An efficient heterogeneous base catalyst for fast production of biodiesel. Journal of Cleaner Production, 2021, 305, 127089.	9.3	60
6	Application of agro-waste derived materials as heterogeneous base catalysts for biodiesel synthesis. Journal of Renewable and Sustainable Energy, 2018, 10, .	2.0	56
7	Solvent-free coumarin synthesis via Pechmann reaction using solid catalysts. Microporous and Mesoporous Materials, 2012, 149, 1-9.	4.4	44
8	Mesoporous aluminosilicate nanocage-catalyzed three-component coupling reaction: an expedient synthesis of α-aminophosphonates. Tetrahedron Letters, 2009, 50, 7132-7136.	1.4	39
9	Immobilization of 1,5,7-triazabicyclo [4.4.0] dec-5-ene over mesoporous materials: An efficient catalyst for Michael-addition reactions under solvent-free condition. Applied Catalysis A: General, 2011, 397, 250-258.	4.3	37
10	Synthesis of Superacidâ€Functionalized Mesoporous Nanocages with Tunable Pore Diameters and Their Application in the Synthesis of Coumarins. Chemistry - A European Journal, 2010, 16, 2843-2851.	3.3	30
11	A facile synthesis of alkylated nitrogen heterocycles catalysed by 3D mesoporous aluminosilicates with cage type pores in aqueous medium. Green Chemistry, 2010, 12, 49-53.	9.0	28
12	Solvent-free Mukaiyama-aldol condensation catalyzed by Ce–Al–MCM-41 mesoporous materials. Microporous and Mesoporous Materials, 2011, 144, 82-90.	4.4	19
13	Room temperature solvent free aza-Michael reactions over nano-cage mesoporous materials. Journal of Molecular Catalysis A, 2014, 394, 145-150.	4.8	17
14	Room Temperature Ring Opening of Epoxides Over Triflic Acid Functionalized Cage Like Mesoporous Materials. ChemistrySelect, 2016, 1, 1650-1657.	1.5	13
15	Preparation of Highly Active Triflic Acid Functionalized SBAâ€15 Catalysts for the Synthesis of Coumarin under Solventâ€Free Conditions. ChemCatChem, 2016, 8, 336-344.	3.7	12
16	Novel synthesis of tetrahydro-β-carbolines and tetrahydroisoquinolines via three-component reaction using hexagonally ordered mesoporous AlSBA-15 catalysts. Tetrahedron Letters, 2010, 51, 702-706.	1.4	8
17	Ordered organo-inorganic hybrid mesoporous solid acid catalysts (Zr–TMS–TFA) for Michael addition of indoles with α,β-unsaturated carbonyl compounds under environmentally benign solvent free conditions. Microporous and Mesoporous Materials, 2012, 164, 232-238.	4.4	8
18	Yellow Oleander (Thevetia peruviana) Seed as a Potential Bioresource for Industrial Applications. Mini-Reviews in Organic Chemistry, 2020, 17, 855-871.	1.3	7

Pranjal Kalita

#	Article	IF	CITATIONS
19	Ce-Al-MCM-41: an efficient catalyst for Mukaiyama-Michael reaction. Studies in Surface Science and Catalysis, 2007, , 1161-1166.	1.5	6
20	Conversion of Fructose and Xylose into Platform Chemicals Using Organoâ€Functionalized Mesoporous Material. ChemistrySelect, 2018, 3, 10971-10976.	1.5	5
21	Cage Like Al-KIT-5 Mesoporous Materials for C–C Bond Formation Reactions Under Solvent Free Conditions. Catalysis Letters, 2015, 145, 2037-2045.	2.6	2