Matthew R Field

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12097659/publications.pdf

Version: 2024-02-01

32 papers 3,339 citations

279798 23 h-index 31 g-index

32 all docs 32 docs citations

times ranked

32

6045 citing authors

#	Article	IF	CITATIONS
1	Enhanced Charge Carrier Mobility in Twoâ€Dimensional High Dielectric Molybdenum Oxide. Advanced Materials, 2013, 25, 109-114.	21.0	355
2	Tunable Plasmon Resonances in Twoâ€Dimensional Molybdenum Oxide Nanoflakes. Advanced Materials, 2014, 26, 3931-3937.	21.0	308
3	Electrochemical Control of Photoluminescence in Two-Dimensional MoS ₂ Nanoflakes. ACS Nano, 2013, 7, 10083-10093.	14.6	282
4	Hard magnetic properties in nanoflake van der Waals Fe3GeTe2. Nature Communications, 2018, 9, 1554.	12.8	272
5	Two dimensional α-MoO3 nanoflakes obtained using solvent-assisted grinding and sonication method: Application for H2 gas sensing. Sensors and Actuators B: Chemical, 2014, 192, 196-204.	7.8	190
6	Elevated Temperature Anodized Nb ₂ O ₅ : A Photoanode Material with Exceptionally Large Photoconversion Efficiencies. ACS Nano, 2012, 6, 4045-4053.	14.6	174
7	Electrospun Granular Hollow SnO ₂ Nanofibers Hydrogen Gas Sensors Operating at Low Temperatures. Journal of Physical Chemistry C, 2014, 118, 3129-3139.	3.1	166
8	The anodized crystalline WO3 nanoporous network with enhanced electrochromic properties. Nanoscale, 2012, 4, 5980.	5.6	164
9	Highâ€Performance Field Effect Transistors Using Electronic Inks of 2D Molybdenum Oxide Nanoflakes. Advanced Functional Materials, 2016, 26, 91-100.	14.9	164
10	Aqueous phase synthesis of copper nanoparticles: a link between heavy metal resistance and nanoparticle synthesis ability in bacterial systems. Nanoscale, 2013, 5, 2300-2306.	5.6	158
11	Nanoporous Nb2O5 hydrogen gas sensor. Sensors and Actuators B: Chemical, 2013, 176, 149-156.	7.8	123
12	Antisymmetric magnetoresistance in van der Waals Fe ₃ GeTe ₂ /graphite/Fe ₃ GeTe ₂ trilayer heterostructures. Science Advances, 2019, 5, eaaw0409.	10.3	119
13	Exfoliation Solvent Dependent Plasmon Resonances in Two-Dimensional Sub-Stoichiometric Molybdenum Oxide Nanoflakes. ACS Applied Materials & Interfaces, 2016, 8, 3482-3493.	8.0	111
14	Defining the role of humidity in the ambient degradation of few-layer black phosphorus. 2D Materials, 2017, 4, 015025.	4.4	110
15	Degradation of black phosphorus is contingent on UV–blue light exposure. Npj 2D Materials and Applications, 2017, 1, .	7.9	95
16	A vein-like nanoporous network of Nb2O5 with a higher lithium intercalation discharge cut-off voltage. Journal of Materials Chemistry A, 2013, 1, 11019.	10.3	77
17	Substoichiometric two-dimensional molybdenum oxide flakes: a plasmonic gas sensing platform. Nanoscale, 2014, 6, 12780-12791.	5.6	77
18	Enhanced Gas Permeation through Graphene Nanocomposites. Journal of Physical Chemistry C, 2015, 119, 13700-13712.	3.1	70

#	Article	IF	CITATIONS
19	Electrochromic properties of TiO2 nanotubes coated with electrodeposited MoO3. Nanoscale, 2013, 5, 10353.	5.6	61
20	Anodic formation of a thick three-dimensional nanoporous WO3 film and its photocatalytic property. Electrochemistry Communications, 2013, 27, 128-132.	4.7	58
21	Robust Nanostructured Silver and Copper Fabrics with Localized Surface Plasmon Resonance Property for Effective Visible Light Induced Reductive Catalysis. Advanced Materials Interfaces, 2016, 3, 1500632.	3.7	46
22	Candle-Soot Derived Photoactive and Superamphiphobic Fractal Titania Electrode. Chemistry of Materials, 2016, 28, 7919-7927.	6.7	36
23	Self-assembled V2O5 interconnected microspheres produced in a fish-water electrolyte medium as a high-performance lithium-ion-battery cathode. Nano Research, 2015, 8, 3591-3603.	10.4	27
24	Zinc Titanate Nanoarrays with Superior Optoelectrochemical Properties for Chemical Sensing. ACS Applied Materials & Samp; Interfaces, 2019, 11, 29255-29267.	8.0	23
25	Fabrication, Structural Characterization and Testing of a Nanostructured Tin Oxide Gas Sensor. IEEE Sensors Journal, 2009, 9, 563-568.	4.7	18
26	Broadband light active MTCNQ-based metal–organic semiconducting hybrids for enhanced redox catalysis. Applied Materials Today, 2018, 13, 107-115.	4.3	16
27	Exploiting the Facile Oxidation of Evaporated Gold Films to Drive Electroless Silver Deposition for the Creation of Bimetallic Au/Ag Surfaces. ChemElectroChem, 2014, 1, 76-82.	3.4	13
28	Enhanced Charge Carrier Mobility in Twoâ€Dimensional High Dielectric Molybdenum Oxide (Adv. Mater.) Tj ETQo	70 0 0 rgB 21.0	T /gverlock 10
29	Metal–Organic Charge Transfer Complexes of Pb(TCNQ) 2 and Pb(TCNQF 4) 2 as New Catalysts for Electron Transfer Reactions. Advanced Materials Interfaces, 2020, 7, 2001111.	3.7	8
30	Long-range ordered TiO ₂ /Au hollow urchins: topology control for maskless electrodeposition. Journal of Materials Chemistry A, 2020, 8, 26035-26044.	10.3	8
31	Supplementing Cold Plasma with Heat Enables Doping and Nanoâ€Structuring of Metal Oxides. Plasma Processes and Polymers, 2014, 11, 897-902.	3.0	1
32	Back Cover: Plasma Process. Polym. 9â°•2014. Plasma Processes and Polymers, 2014, 11, 904-904.	3.0	0