Li Fei-Fei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12097401/publications.pdf

Version: 2024-02-01

95 papers 83,966 citations

38 h-index 138484 58 g-index

97 all docs

97 docs citations 97 times ranked 47071 citing authors

#	Article	IF	CITATIONS
1	Neural Event Semantics for Grounded Language Understanding. Transactions of the Association for Computational Linguistics, 2021, 9, 875-890.	4.8	3
2	Ethical issues in using ambient intelligence in health-care settings. The Lancet Digital Health, 2021, 3, e115-e123.	12.3	48
3	Quantifying Parkinson's disease motor severity under uncertainty using MDS-UPDRS videos. Medical Image Analysis, 2021, 73, 102179.	11.6	37
4	Deep Affordance Foresight: Planning Through What Can Be Done in the Future. , 2021, , .		19
5	Visual Intelligence through Human Interaction. Human-computer Interaction Series, 2021, , 257-314.	0.6	3
6	Learning task-oriented grasping for tool manipulation from simulated self-supervision. International Journal of Robotics Research, 2020, 39, 202-216.	8.5	87
7	Online Developmental Science to Foster Innovation, Access, and Impact. Trends in Cognitive Sciences, 2020, 24, 675-678.	7.8	53
8	Automatic detection of hand hygiene using computer vision technology. Journal of the American Medical Informatics Association: JAMIA, 2020, 27, 1316-1320.	4.4	31
9	Illuminating the dark spaces of healthcare with ambient intelligence. Nature, 2020, 585, 193-202.	27.8	139
10	Action Genome: Actions As Compositions of Spatio-Temporal Scene Graphs. , 2020, , .		150
11	Assessing the accuracy of automatic speech recognition for psychotherapy. Npj Digital Medicine, 2020, 3, 82.	10.9	35
12	Towards fairer datasets. , 2020, , .		123
13	RubiksNet: Learnable 3D-Shift for Efficient Video Action Recognition. Lecture Notes in Computer Science, 2020, , 505-521.	1.3	33
14	Vision-Based Estimation of MDS-UPDRS Gait Scores for Assessing Parkinson's Disease Motor Severity. Lecture Notes in Computer Science, 2020, 12263, 637-647.	1.3	30
15	A computer vision system for deep learning-based detection of patient mobilization activities in the ICU. Npj Digital Medicine, 2019, 2, 11.	10.9	73
16	Situational Fusion of Visual Representation for Visual Navigation. , 2019, , .		36
17	Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation. , 2019, , .		547
18	Scene Graph Prediction With Limited Labels. , 2019, 2019, 2580-2590.		12

#	Article	IF	CITATIONS
19	Automated abnormality detection in lower extremity radiographs using deep learning. Nature Machine Intelligence, 2019, 1, 578-583.	16.0	47
20	Thoracic Disease Identification and Localization with Limited Supervision. Advances in Computer Vision and Pattern Recognition, 2019, , 139-161.	1.3	3
21	Bedside Computer Vision — Moving Artificial Intelligence from Driver Assistance to Patient Safety. New England Journal of Medicine, 2018, 378, 1271-1273.	27.0	91
22	Every Moment Counts: Dense Detailed Labeling of Actions in Complex Videos. International Journal of Computer Vision, 2018, 126, 375-389.	15.6	192
23	Tool Detection and Operative Skill Assessment in Surgical Videos Using Region-Based Convolutional Neural Networks. , 2018, , .		169
24	Distinct contributions of functional and deep neural network features to representational similarity of scenes in human brain and behavior. ELife, 2018, 7, .	6.0	132
25	Human–Object Interactions Are More than the Sum of Their Parts. Cerebral Cortex, 2017, 27, bhw077.	2.9	41
26	Evidence for similar patterns of neural activity elicited by picture- and word-based representations of natural scenes. Neurolmage, 2017, 155, 422-436.	4.2	21
27	Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations. International Journal of Computer Vision, 2017, 123, 32-73.	15.6	2,422
28	Deep Visual-Semantic Alignments for Generating Image Descriptions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39, 664-676.	13.9	542
29	Inferring and Executing Programs for Visual Reasoning., 2017,,.		239
30	CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning. , 2017, , .		742
31	Fine-Grained Recognition in the Wild: A Multi-task Domain Adaptation Approach., 2017,,.		87
32	Categorization influences detection: A perceptual advantage for representative exemplars of natural scene categories. Journal of Vision, 2017, 17, 21.	0.3	12
33	Pinpointing the peripheral bias in neural scene-processing networks during natural viewing. Journal of Vision, 2016, 16, 9.	0.3	22
34	Two Distinct Scene-Processing Networks Connecting Vision and Memory. ENeuro, 2016, 3, ENEURO.0178-16.2016.	1.9	111
35	Typicality sharpens category representations in object-selective cortex. Neurolmage, 2016, 134, 170-179.	4.2	32
36	The Unreasonable Effectiveness of Noisy Data for Fine-Grained Recognition. Lecture Notes in Computer Science, 2016, , 301-320.	1.3	150

#	Article	IF	Citations
37	Visual Relationship Detection with Language Priors. Lecture Notes in Computer Science, 2016, , 852-869.	1.3	444
38	Visual scenes are categorized by function Journal of Experimental Psychology: General, 2016, 145, 82-94.	2.1	60
39	Connectionist Temporal Modeling for Weakly Supervised Action Labeling. Lecture Notes in Computer Science, 2016, , 137-153.	1.3	86
40	Perceptual Losses for Real-Time Style Transfer and Super-Resolution. Lecture Notes in Computer Science, 2016, , 694-711.	1.3	4,037
41	What's the Point: Semantic Segmentation with Point Supervision. Lecture Notes in Computer Science, 2016, , 549-565.	1.3	288
42	Embracing Error to Enable Rapid Crowdsourcing. , 2016, , .		44
43	Basic Level Category Structure Emerges Gradually across Human Ventral Visual Cortex. Journal of Cognitive Neuroscience, 2015, 27, 1427-1446.	2.3	42
44	Image retrieval using scene graphs. , 2015, , .		569
45	Love Thy Neighbors: Image Annotation by Exploiting Image Metadata. , 2015, , .		76
46	Learning semantic relationships for better action retrieval in images. , 2015, , .		74
47	Deep visual-semantic alignments for generating image descriptions. , 2015, , .		2,539
48	ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision, 2015, 115, 211-252.	15.6	24,215
49	What you see is what you expect: rapid scene understanding benefits from prior experience. Attention, Perception, and Psychophysics, 2015, 77, 1239-1251.	1.3	56
50	Generating Semantically Precise Scene Graphs from Textual Descriptions for Improved Image Retrieval. , 2015, , .		183
51	Parcellating connectivity in spatial maps. PeerJ, 2015, 3, e784.	2.0	66
52	Visual categorization is automatic and obligatory: Evidence from Stroop-like paradigm. Journal of Vision, 2014, 14, 14-14.	0.3	59
53	Large-Scale Video Classification with Convolutional Neural Networks. , 2014, , .		4,114
54	Scalable multi-label annotation. , 2014, , .		91

#	Article	IF	Citations
55	Object Bank: An Object-Level Image Representation for High-Level Visual Recognition. International Journal of Computer Vision, 2014, 107, 20-39.	15.6	111
56	Reasoning about Object Affordances in a Knowledge Base Representation. Lecture Notes in Computer Science, 2014, , 408-424.	1.3	101
57	Differential connectivity within the Parahippocampal Place Area. NeuroImage, 2013, 75, 228-237.	4.2	137
58	Detecting Avocados to Zucchinis: What Have We Done, and Where Are We Going?., 2013,,.		48
59	Discovering Object Functionality. , 2013, , .		31
60	Good Exemplars of Natural Scene Categories Elicit Clearer Patterns than Bad Exemplars but Not Greater BOLD Activity. PLoS ONE, 2013, 8, e58594.	2.5	29
61	Recognizing Human-Object Interactions in Still Images by Modeling the Mutual Context of Objects and Human Poses. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34, 1691-1703.	13.9	170
62	Learning latent temporal structure for complex event detection. , 2012, , .		239
63	Voxel-level functional connectivity using spatial regularization. Neurolmage, 2012, 63, 1099-1106.	4.2	30
64	Simple line drawings suffice for functional MRI decoding of natural scene categories. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9661-9666.	7.1	189
65	OPTIMOL: Automatic Online Picture Collection via Incremental Model Learning. International Journal of Computer Vision, 2010, 88, 147-168.	15.6	144
66	Learning Object Categories From Internet Image Searches. Proceedings of the IEEE, 2010, 98, 1453-1466.	21.3	57
67	What Does Classifying More Than 10,000 Image Categories Tell Us?. Lecture Notes in Computer Science, 2010, , 71-84.	1.3	220
68	Modeling Temporal Structure of Decomposable Motion Segments for Activity Classification. Lecture Notes in Computer Science, 2010, , 392-405.	1.3	340
69	Modeling mutual context of object and human pose in human-object interaction activities. , 2010, , .		410
70	Grouplet: A structured image representation for recognizing human and object interactions. , 2010, , .		221
71	ImageNet: A large-scale hierarchical image database. , 2009, , .		313
72	Natural Scene Categories Revealed in Distributed Patterns of Activity in the Human Brain. Journal of Neuroscience, 2009, 29, 10573-10581.	3.6	314

#	Article	IF	Citations
73	Neural mechanisms of rapid natural scene categorization in human visual cortex. Nature, 2009, 460, 94-97.	27.8	271
74	Towards total scene understanding: Classification, annotation and segmentation in an automatic framework. , 2009, , .		247
75	ImageNet: A large-scale hierarchical image database. , 2009, , .		29,755
76	A multi-view probabilistic model for 3D object classes. , 2009, , .		36
77	Mining discriminative adjectives and prepositions for natural scene recognition. , 2009, , .		1
78	Towards total scene understanding: Classification, annotation and segmentation in an automatic framework. , 2009, , .		2
79	A multi-view probabilistic model for 3D object classes. , 2009, , .		3
80	Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words. International Journal of Computer Vision, 2008, 79, 299-318.	15.6	1,227
81	Spatial-Temporal correlatons for unsupervised action classification. , 2008, , .		125
82	Towards Scalable Dataset Construction: An Active Learning Approach. Lecture Notes in Computer Science, 2008, , 86-98.	1.3	69
83	Extracting Moving People from Internet Videos. Lecture Notes in Computer Science, 2008, , 527-540.	1.3	25
84	What, where and who? Classifying events by scene and object recognition., 2007,,.		537
85	OPTIMOL: automatic Online Picture collecTion via Incremental MOdel Learning. , 2007, , .		113
86	What do we perceive in a glance of a real-world scene?. Journal of Vision, 2007, 7, 10.	0.3	312
87	Task-set switching with natural scenes: Measuring the cost of deploying top-down attention. Journal of Vision, 2007, 7, 9.	0.3	17
88	Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. Computer Vision and Image Understanding, 2007, 106, 59-70.	4.7	1,537
89	One-shot learning of object categories. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28, 594-611.	13.9	1,947
90	Audio-Visual Speaker Localization Using Graphical Models. , 2006, , .		6

Li Fei-Fei

#	Article	IF	CITATION
91	Binding is a local problem for natural objects and scenes. Vision Research, 2005, 45, 3133-3144.	1.4	26
92	Why does natural scene categorization require little attention? Exploring attentional requirements for natural and synthetic stimuli. Visual Cognition, 2005, 12, 893-924.	1.6	94
93	Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories. , 0, , .		846
94	Using Dependent Regions for Object Categorization in a Generative Framework. , 0, , .		72
95	Learning Task-Oriented Grasping for Tool Manipulation from Simulated Self-Supervision. , 0, , .		26