
Miodrag Stojkovic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1209682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Orally administered fluorescent nanosized polystyrene particles affect cell viability, hormonal and inflammatory profile, and behavior in treated mice. Environmental Pollution, 2022, 305, 119206.	7.5	32
2	Activation of Neurogenesis in Multipotent Stem Cells Cultured In Vitro and in the Spinal Cord Tissue After Severe Injury by Inhibition of Glycogen Synthase Kinase-3. Neurotherapeutics, 2021, 18, 515-533.	4.4	13
3	Nanoplastics as a Potential Environmental Health Factor: From Molecular Interaction to Altered Cellular Function and Human Diseases. Serbian Journal of Experimental and Clinical Research, 2021, .	0.1	0
4	Human pluripotent stem cells – Unique tools to decipher the effects of environmental and intracellular plastic pollution on human health. Environmental Pollution, 2021, 269, 116144.	7.5	7
5	Special Series: Stem Cells and Hearing Loss. Stem Cells, 2021, 39, 835-837.	3.2	1
6	Human Embryos, Induced Pluripotent Stem Cells, and Organoids: Models to Assess the Effects of Environmental Plastic Pollution. Frontiers in Cell and Developmental Biology, 2021, 9, 709183.	3.7	6
7	Human induced pluripotent stem cells and CRISPR/Cas-mediated targeted genome editing: Platforms to tackle sensorineural hearing loss. Stem Cells, 2021, 39, 673-696.	3.2	23
8	Platform to study intracellular polystyrene nanoplastic pollution and clinical outcomes. Stem Cells, 2020, 38, 1321-1325.	3.2	23
9	Analysis of the applied technique of intravenous anesthesia for in vitro fertilization in obese and patients with normal body mass index. Srpski Arhiv Za Celokupno Lekarstvo, 2019, 147, 588-594.	0.2	2
10	Intraperitoneal administration of mesenchymal stem cells ameliorates acute dextran sulfate sodium-induced colitis by suppressing dendritic cells. Biomedicine and Pharmacotherapy, 2018, 100, 426-432.	5.6	35
11	CD200 Expression Marks a Population of Quiescent Limbal Epithelial Stem Cells with Holoclone Forming Ability. Stem Cells, 2018, 36, 1723-1735.	3.2	19
12	Stem Cells Therapy for Spinal Cord Injury. International Journal of Molecular Sciences, 2018, 19, 1039.	4.1	84
13	Ethical and Safety Issues of Stem Cell-Based Therapy. International Journal of Medical Sciences, 2018, 15, 36-45.	2.5	507
14	Highly Efficient Neural Conversion of Human Pluripotent Stem Cells in Adherent and Animal-Free Conditions. Stem Cells Translational Medicine, 2017, 6, 1217-1226.	3.3	37
15	hiPSC Disease Modeling of Rare Hereditary Cerebellar Ataxias: Opportunities and Future Challenges. Neuroscientist, 2017, 23, 554-566.	3.5	5
16	Mesenchymal Stem Cell-Dependent Modulation of Liver Diseases. International Journal of Biological Sciences, 2017, 13, 1109-1117.	6.4	62
17	Stem Cell-Based Therapy in Transplantation and Immune-Mediated Diseases. Stem Cells International, 2017, 2017, 1-3.	2.5	4
18	Stem Cells and Labeling for Spinal Cord Injury. International Journal of Molecular Sciences, 2017, 18, 6.	4.1	31

#	Article	IF	CITATIONS
19	Pharmacological Inhibition of Gal-3 in Mesenchymal Stem Cells Enhances Their Capacity to Promote Alternative Activation of Macrophages in Dextran Sulphate Sodium-Induced Colitis. Stem Cells International, 2016, 2016, 1-12.	2.5	32
20	Primordial Germ Cells: Current Knowledge and Perspectives. Stem Cells International, 2016, 2016, 1-8.	2.5	66
21	Stem Cells, Inflammation, and Fibrosis. Stem Cells International, 2016, 2016, 1-2.	2.5	1
22	Connexin 50 modulates Sox2 expression in spinal-cord-derived ependymal stem/progenitor cells. Cell and Tissue Research, 2016, 365, 295-307.	2.9	10
23	Aging of Stem and Progenitor Cells: Mechanisms, Impact on Therapeutic Potential, and Rejuvenation. Rejuvenation Research, 2016, 19, 3-12.	1.8	31
24	Stem Cells: New Hope For Spinal Cord Injury. Serbian Journal of Experimental and Clinical Research, 2015, 16, 3-8.	0.1	0
25	Complete rat spinal cord transection as a faithful model of spinal cord injury for translational cell transplantation. Scientific Reports, 2015, 5, 9640.	3.3	51
26	Purinergic Receptors in Spinal Cord-Derived Ependymal Stem/Progenitor Cells and Their Potential Role in Cell-Based Therapy for Spinal Cord Injury. Cell Transplantation, 2015, 24, 1493-1509.	2.5	37
27	Connexin 50 Expression in Ependymal Stem Progenitor Cells after Spinal Cord Injury Activation. International Journal of Molecular Sciences, 2015, 16, 26608-26618.	4.1	12
28	Mesenchymal Stem Cells: A Friend or Foe in Immune-Mediated Diseases. Stem Cell Reviews and Reports, 2015, 11, 280-287.	5.6	174
29	Concise Review: Reactive Astrocytes and Stem Cells in Spinal Cord Injury: Good Guys or Bad Guys?. Stem Cells, 2015, 33, 1036-1041.	3.2	108
30	Concise Review: Cardiac Disease Modeling Using Induced Pluripotent Stem Cells. Stem Cells, 2015, 33, 2643-2651.	3.2	39
31	Stem Cells as New Agents for the Treatment of Infertility: Current and Future Perspectives and Challenges. BioMed Research International, 2014, 2014, 1-8.	1.9	83
32	Non-coding RNAs in pluripotency and neural differentiation of human pluripotent stem cells. Frontiers in Genetics, 2014, 5, 132.	2.3	22
33	An Induced Pluripotent Stem Cell Model of Hypoplastic Left Heart Syndrome (HLHS) Reveals Multiple Expression and Functional Differences in HLHS-Derived Cardiac Myocytes. Stem Cells Translational Medicine, 2014, 3, 416-423.	3.3	72
34	Growth of Human Pluripotent Stem Cells Using Functional Human Extracellular Matrix. Methods in Molecular Biology, 2014, 1307, 39-60.	0.9	3
35	Perspectives and Future Directions of Human Pluripotent Stem Cell-Based Therapies: Lessons from Geron's Clinical Trial for Spinal Cord Injury. Stem Cells and Development, 2014, 23, 1-4.	2.1	57
36	Brief Report: Astrogliosis Promotes Functional Recovery of Completely Transected Spinal Cord Following Transplantation of hESC-Derived Oligodendrocyte and Motoneuron Progenitors. Stem Cells, 2014, 32, 594-599.	3.2	26

#	Article	IF	CITATIONS
37	Concise Review: The Epigenetic Contribution to Stem Cell Ageing: Can We Rejuvenate Our Older Cells?. Stem Cells, 2014, 32, 2291-2298.	3.2	8
38	Concise Review: Therapeutic Potential of Mesenchymal Stem Cells for the Treatment of Acute Liver Failure and Cirrhosis. Stem Cells, 2014, 32, 2818-2823.	3.2	175
39	Dental stem cellscharacteristics and potential. Histology and Histopathology, 2014, 29, 699-706.	0.7	46
40	Human mesenchymal stem cells creating an immunosuppressive environment and promote breast cancer in mice. Scientific Reports, 2013, 3, 2298.	3.3	88
41	Mesenchymal Stem Cells for Diabetes and Related Complications. , 2013, , 207-227.		4
42	Brief report: A human induced pluripotent stem cell model of cernunnos deficiency reveals an important role for XLF in the survival of the primitive hematopoietic progenitors. Stem Cells, 2013, 31, 2015-2023.	3.2	15
43	Brief Report: Human Pluripotent Stem Cell Models of Fanconi Anemia Deficiency Reveal an Important Role for Fanconi Anemia Proteins in Cellular Reprogramming and Survival of Hematopoietic Progenitors. Stem Cells, 2013, 31, 1022-1029.	3.2	51
44	Considerations of Quality Control Issues for the Mesenchymal Stem Cells-Based Medicinal Products. , 2013, , 265-278.		0
45	Stem Cell-Based Therapy for Spinal Cord Injury. Cell Transplantation, 2013, 22, 1309-1323.	2.5	47
46	Concise Review: Human Pluripotent Stem Cells in the Treatment of Spinal Cord Injury. Stem Cells, 2012, 30, 1787-1792.	3.2	47
47	FM19G11 Favors Spinal Cord Injury Regeneration and Stem Cell Self-Renewal by Mitochondrial Uncoupling and Glucose Metabolism Induction. Stem Cells, 2012, 30, 2221-2233.	3.2	29
48	Derivation of Cerebellar Neurons from Human Pluripotent Stem Cells. Current Protocols in Stem Cell Biology, 2012, 20, Unit 1H.5.	3.0	28
49	Editorial: Our Top 10 Developments in Stem Cell Biology over the Last 30 Years. Stem Cells, 2012, 30, 2-9.	3.2	29
50	Development of a Human Extracellular Matrix for Applications Related with Stem Cells and Tissue Engineering. Stem Cell Reviews and Reports, 2012, 8, 170-183.	5.6	12
51	Locomotor Recovery After Spinal Cord Transection: Transplantation of Oligodendrocytes and Motoneuron Progenitors Generated from Human Embryonic Stem Cells. , 2012, , 211-219.		0
52	Neural Differentiation from Human Embryonic Stem Cells as a Tool to Study Early Brain Development and the Neuroteratogenic Effects of Ethanol. Stem Cells and Development, 2011, 20, 327-339.	2.1	52
53	Human stem cell research and regenerative medicinepresent and future. British Medical Bulletin, 2011, 99, 155-168.	6.9	93
54	Concise Review: Mesenchymal Stem Cell Treatment of the Complications of Diabetes Mellitus. Stem Cells, 2011, 29, 5-10.	3.2	215

#	Article	IF	CITATIONS
55	Concise Review: Induced Pluripotent Stem Cells and Lineage Reprogramming: Prospects for Bone Regeneration. Stem Cells, 2011, 29, 555-563.	3.2	52
56	Concise Review: Stem Cells for the Treatment of Cerebellar-Related Disorders. Stem Cells, 2011, 29, 564-569.	3.2	7
57	Neural Stem Cells, a Step Closer to Clinic?. Stem Cells, 2011, 29, 1477-1478.	3.2	1
58	Characterisation of Human Embryonic Stem Cells Conditioning Media by 1H-Nuclear Magnetic Resonance Spectroscopy. PLoS ONE, 2011, 6, e16732.	2.5	23
59	Generation of somatic cells by direct conversion: Do we need pluripotent cells?. Serbian Journal of Experimental and Clinical Research, 2011, 12, 91-96.	0.1	0
60	Challenges of Stem Cell Therapy for Spinal Cord Injury: Human Embryonic Stem Cells, Endogenous Neural Stem Cells, or Induced Pluripotent Stem Cells? Â. Stem Cells, 2010, 28, 93-99.	3.2	183
61	Expression of GFP Under the Control of the RNA Helicase <i>VASA</i> Permits Fluorescence-Activated Cell Sorting Isolation of Human Primordial Germ Cells Â. Stem Cells, 2010, 28, 84-92.	3.2	38
62	<i>Stem Cells</i> Continues to Perform and Flourish. Stem Cells, 2010, 28, 1-1.	3.2	1
63	Hypoxia Promotes Efficient Differentiation of Human Embryonic Stem Cells to Functional Endothelium. Stem Cells, 2010, 28, 407-418.	3.2	92
64	Human Induced Pluripotent Stem Cell Lines Show Stress Defense Mechanisms and Mitochondrial Regulation Similar to Those of Human Embryonic Stem Cells. Stem Cells, 2010, 28, 661-673.	3.2	265
65	Induced Pluripotent Stem Cells : It Looks Simple but Can Looks Deceive?. Stem Cells, 2010, 28, 845-850.	3.2	15
66	European Scientific, Ethical, and Legal Issues on Human Stem Cell Research and Regenerative Medicine. Stem Cells, 2010, 28, 1005-1007.	3.2	29
67	Transplanted Oligodendrocytes and Motoneuron Progenitors Generated from Human Embryonic Stem Cells Promote Locomotor Recovery After Spinal Cord Transection. Stem Cells, 2010, 28, 1541-1549.	3.2	144
68	STEM CELLS' Position Statement on hESC Research. Stem Cells, 2010, 28, 1A-1A.	3.2	0
69	FM19G11, a New Hypoxia-inducible Factor (HIF) Modulator, Affects Stem Cell Differentiation Status. Journal of Biological Chemistry, 2010, 285, 1333-1342.	3.4	99
70	Evaluation of epigenetic marks in human embryos derived from IVF and ICSI. Human Reproduction, 2010, 25, 2387-2395.	0.9	93
71	Efficient Differentiation of Human Embryonic Stem Cells into Functional Cerebellar-Like Cells. Stem Cells and Development, 2010, 19, 1745-1756.	2.1	61
72	A role for NANOG in G1 to S transition in human embryonic stem cells through direct binding of CDK6 and CDC25A. Journal of Cell Biology, 2009, 184, 67-82.	5.2	177

#	Article	IF	CITATIONS
73	Activated Spinal Cord Ependymal Stem Cells Rescue Neurological Function. Stem Cells, 2009, 27, 733-743.	3.2	147
74	Human Embryonic Stem Cell Differentiation Toward Regional Specific Neural Precursors. Stem Cells, 2009, 27, 78-87.	3.2	96
75	Celebrating 10 Years of hESC Lines: An Interview with Christine Mummery. Stem Cells, 2009, 27, 1-3.	3.2	2
76	Celebrating 10 Years of hESC Lines: An Interview with Peter Andrews. Stem Cells, 2009, 27, 4-6.	3.2	1
77	Growth of Human Embryonic Stem Cells Using Derivates of Human Fibroblasts. Methods in Molecular Biology, 2009, 584, 55-69.	0.9	14
78	Downregulation of Multiple Stress Defense Mechanisms During Differentiation of Human Embryonic Stem Cells. Stem Cells, 2008, 26, 455-464.	3.2	240
79	Reprogramming Battle: Egg Vs. Virus. Stem Cells, 2008, 26, 1-2.	3.2	7
80	Commentary: Somatic Cell Nuclear Transfer-Progress and Promise. Stem Cells, 2008, 26, 494-495.	3.2	9
81	Isolation of Primordial Germ Cells from Differentiating Human Embryonic Stem Cells. Stem Cells, 2008, 26, 3075-3085.	3.2	161
82	Human Embryonic Stem Cells (hESCs): Celebrating 10 Years of hESC Lines. Stem Cells, 2008, 26, 2746-2746.	3.2	0
83	Celebrating 10 Years of hESC Lines: An Interview with Alan Trounson. Stem Cells, 2008, 26, 3002-3004.	3.2	0
84	Celebrating 10 Years of hESC Lines: An Interview with Rudolf Jaenisch. Stem Cells, 2008, 26, 3005-3007.	3.2	4
85	Efficient Hematopoietic Differentiation of Human Embryonic Stem Cells on Stromal Cells Derived from Hematopoietic Niches. Cell Stem Cell, 2008, 3, 85-98.	11.1	276
86	Non-invasive Imaging of Stem Cells by Scanning Ion Conductance Microscopy: Future Perspective. Tissue Engineering - Part C: Methods, 2008, 14, 311-318.	2.1	23
87	Silencing of the expression of pluripotent driven-reporter genes stably transfected into human pluripotent cells. Regenerative Medicine, 2008, 3, 505-522.	1.7	21
88	Differentiation of Human Embryonic Stem Cells to Regional Specific Neural Precursors in Chemically Defined Medium Conditions. PLoS ONE, 2008, 3, e2122.	2.5	119
89	Restriction landmark genome scanning identifies culture-induced DNA methylation instability in the human embryonic stem cell epigenome. Human Molecular Genetics, 2007, 16, 1253-1268.	2.9	162
90	Putative Role of Hyaluronan and Its Related Genes, <i>HAS2</i> and <i>RHAMM</i> , in Human Early Preimplantation Embryogenesis and Embryonic Stem Cell Characterization. Stem Cells, 2007, 25, 3045-3057.	3.2	63

#	Article	IF	CITATIONS
91	Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nature Biotechnology, 2007, 25, 803-816.	17.5	983
92	Differentiation of Human Embryonic Stem Cells into Corneal Epithelial-Like Cells by In Vitro Replication of the Corneal Epithelial Stem Cell Niche. Stem Cells, 2007, 25, 1145-1155.	3.2	194
93	Derivation of Human Embryonic Stem Cells from Developing and Arrested Embryos. Stem Cells, 2006, 24, 2669-2676.	3.2	173
94	Mechanisms of self-renewal in human embryonic stem cells. European Journal of Cancer, 2006, 42, 1257-1272.	2.8	51
95	The egg-sharing model for human therapeutic cloning research: Managing donor selection criteria, the proportion of shared oocytes allocated to research, and amount of financial subsidy given to the donor. Medical Hypotheses, 2006, 66, 1022-1024.	1.5	4
96	Mammalian oocyte polarity can be exploited for the automation of somatic cell nuclear transfer – in the development of a †cloning biochip'. Medical Hypotheses, 2006, 67, 420-421.	1.5	3
97	Epigenetic Modification Is Central to Genome Reprogramming in Somatic Cell Nuclear Transfer. Stem Cells, 2006, 24, 805-814.	3.2	109
98	Using Therapeutic Cloning to Fight Human Disease: A Conundrum or Reality?. Stem Cells, 2006, 24, 1628-1637.	3.2	46
99	The status of human nuclear transfer. Stem Cell Reviews and Reports, 2006, 2, 301-308.	5.6	15
100	Tissue-Specific Effects of In Vitro Fertilization Procedures on Genomic Cytosine Methylation Levels in Overgrown and Normal Sized Bovine Fetuses1. Biology of Reproduction, 2006, 75, 17-23.	2.7	69
101	The role of PI3K/AKT, MAPK/ERK and NFÎ [®] β signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis. Human Molecular Genetics, 2006, 15, 1894-1913.	2.9	355
102	An Autogeneic Feeder Cell System That Efficiently Supports Growth of Undifferentiated Human Embryonic Stem Cells. Stem Cells, 2005, 23, 306-314.	3.2	222
103	Human-Serum Matrix Supports Undifferentiated Growth of Human Embryonic Stem Cells. Stem Cells, 2005, 23, 895-902.	3.2	110
104	Downregulation of NANOG Induces Differentiation of Human Embryonic Stem Cells to Extraembryonic Lineages. Stem Cells, 2005, 23, 1035-1043.	3.2	333
105	Ethics debate is what put Newcastle paper in the news. Nature, 2005, 436, 460-460.	27.8	1
106	Human embryonic stem cells: biology and clinical implications. Expert Reviews in Molecular Medicine, 2005, 7, 1-21.	3.9	40
107	Derivation of a human blastocyst after heterologous nuclear transfer to donated oocytes. Reproductive BioMedicine Online, 2005, 11, 226-231.	2.4	150
108	In search of the best candidate for regeneration of ischemic tissues. Are embryonic/fetal stem cells more advantageous than adult counterparts?. Thrombosis and Haemostasis, 2005, 94, 738-49.	3.4	10

#	Article	IF	CITATIONS
109	Nuclear-Cytoplasmic Interactions Affect In Utero Developmental Capacity, Phenotype, and Cellular Metabolism of Bovine Nuclear Transfer Fetuses1. Biology of Reproduction, 2004, 70, 1196-1205.	2.7	35
110	Derivation, growth and applications of human embryonic stem cells. Reproduction, 2004, 128, 259-267.	2.6	124
111	Phenotypic Characterization of Murine Primitive Hematopoietic Progenitor Cells Isolated on Basis of Aldehyde Dehydrogenase Activity. Stem Cells, 2004, 22, 1142-1151.	3.2	225
112	Derivation of Human Embryonic Stem Cells from Day-8 Blastocysts Recovered after Three-Step In Vitro Culture. Stem Cells, 2004, 22, 790-797.	3.2	158
113	Effects of growth hormone on the ultrastructure of bovine preimplantation embryos. Cell and Tissue Research, 2004, 317, 101-8.	2.9	17
114	Epigenetic Marking Correlates with Developmental Potential in Cloned Bovine Preimplantation Embryos. Current Biology, 2003, 13, 1116-1121.	3.9	491
115	Efficient transgenesis in farm animals by lentiviral vectors. EMBO Reports, 2003, 4, 1054-1058.	4.5	251
116	Induction of a Senescent-Like Phenotype Does Not Confer the Ability of Bovine Immortal Cells to Support the Development of Nuclear Transfer Embryos1. Biology of Reproduction, 2003, 69, 301-309.	2.7	79
117	Heteroplasmy in Bovine Fetuses Produced by Intra- and Inter-Subspecific Somatic Cell Nuclear Transfer: Neutral Segregation of Nuclear Donor Mitochondrial DNA in Various Tissues and Evidence for Recipient Cow Mitochondria in Fetal Blood1. Biology of Reproduction, 2003, 68, 159-166.	2.7	78
118	Growth Hormone-Related Effects on Apoptosis, Mitosis, and Expression of Connexin 43 in Bovine In Vitro Maturation Cumulus-Oocyte Complexes1. Biology of Reproduction, 2003, 68, 1584-1589.	2.7	49
119	Developmental Regulation of Hyaluronan-Binding Protein (RHAMM/IHABP) Expression in Early Bovine Embryos1. Biology of Reproduction, 2003, 68, 60-66.	2.7	30
120	Efficient transgenesis in farm animals by lentiviral vectors. EMBO Reports, 2003, 4, 1054-1058.	4.5	91
121	The Effect of Activation of Mammalian Oocytes on Remodeling of Donor Nuclei after Nuclear Transfer. Cloning and Stem Cells, 2002, 4, 245-252.	2.6	9
122	Bovine Somatic Cell Nuclear Transfer Using Recipient Oocytes Recovered by Ovum Pick-Up: Effect of Maternal Lineage of Oocyte Donors1. Biology of Reproduction, 2002, 66, 367-373.	2.7	55
123	Expression of the vascular endothelial growth factor and its receptors and effects of VEGF during in vitro maturation of bovine cumulus-oocyte complexes (COC). Molecular Reproduction and Development, 2002, 62, 29-36.	2.0	46
124	Growth hormone inhibits apoptosis in in vitro produced bovine embryos. Molecular Reproduction and Development, 2002, 61, 180-186.	2.0	55
125	Mitochondrial Distribution and Adenosine Triphosphate Content of Bovine Oocytes Before and After In Vitro Maturation: Correlation with Morphological Criteria and Developmental Capacity After In Vitro Fertilization and Culture1. Biology of Reproduction, 2001, 64, 904-909.	2.7	409
126	Nuclear transfer in cattle with non-transfected and transfected fetal or cloned transgenic fetal and postnatal fibroblasts. Molecular Reproduction and Development, 2001, 60, 362-369.	2.0	91

#	Article	IF	CITATIONS
127	Growth Hormone (GH)/GH Receptor Expression and GH-Mediated Effects During Early Bovine Embryogenesis1. Biology of Reproduction, 2001, 64, 1826-1834.	2.7	40
128	Energy Status of Nonmatured and In Vitro-Matured Domestic Cat Oocytes and of Different Stages of In Vitro-Produced Embryos: Enzymatic Removal of the Zona Pellucida Increases Adenosine Triphosphate Content and Total Cell Number of Blastocysts. Biology of Reproduction, 2001, 65, 793-798.	2.7	29
129	Efficient In Vitro Production of Cat Embryos in Modified Synthetic Oviduct Fluid Medium: Effects of Season and Ovarian Status. Biology of Reproduction, 2001, 65, 9-13.	2.7	70
130	Insulin-Like Growth Factor I (IGF-I) and Long R3IGF-I Differently Affect Development and Messenger Ribonucleic Acid Abundance for IGF-Binding Proteins and Type I IGF Receptors in in Vitro Produced Bovine Embryos*. Endocrinology, 2001, 142, 1309-1316.	2.8	51
131	Insulin-Like Growth Factor I (IGF-I) and Long R3IGF-I Differently Affect Development and Messenger Ribonucleic Acid Abundance for IGF-Binding Proteins and Type I IGF Receptors in in Vitro Produced Bovine Embryos. Endocrinology, 2001, 142, 1309-1316.	2.8	23
132	Mitochondrial DNA heteroplasmy in cloned cattle produced by fetal and adult cell cloning. Nature Genetics, 2000, 25, 255-257.	21.4	164
133	Transgenic Technology in Farm Animals - Progress and Perspectives. Experimental Physiology, 2000, 85, 615-625.	2.0	47
134	Behavior of M-phase synchronized blastomeres after nuclear transfer in cattle. Molecular Reproduction and Development, 2000, 57, 37-47.	2.0	21
135	Behavior of Mâ€phase synchronized blastomeres after nuclear transfer in cattle. Molecular Reproduction and Development, 2000, 57, 37-47.	2.0	6
136	Transgenic technology in farm animals - progress and perspectives. Experimental Physiology, 2000, 85, 615-625.	2.0	28
137	Coenzyme Q10 in Submicron-Sized Dispersion Improves Development, Hatching, Cell Proliferation, and Adenosine Triphosphate Content of In Vitro-Produced Bovine Embryos1. Biology of Reproduction, 1999, 61, 541-547.	2.7	48
138	Potential of fetal germ cells for nuclear transfer in cattle. Molecular Reproduction and Development, 1999, 52, 421-426.	2.0	61
139	Adult cloning in cattle: Potential of nuclei from a permanent cell line and from primary cultures. Molecular Reproduction and Development, 1999, 54, 264-272.	2.0	152
140	Growth Factors and Components for Extracellular Proteolysis Are Differentially Expressed during In Vitro Maturation of Bovine Cumulus-Oocyte Complexes1. Biology of Reproduction, 1998, 59, 801-806.	2.7	16
141	Primary culture of porcine PGCs requires LIF and porcine membrane-bound stem cell factor. Zygote, 1998, 6, 271-275.	1.1	27
142	Karyoplast-cytoplast volume ratio in bovine nuclear transfer embryos: Effect on developmental potential. Molecular Reproduction and Development, 1997, 48, 332-338.	2.0	39
143	Secretion of Biologically Active InterferoNÏ,, by in Vitro-Derived Bovine Trophoblastic Tissue1. Biology of Reproduction, 1995, 53, 1500-1507.	2.7	59