
Philipp Korber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1209680/publications.pdf Version: 2024-02-01

DHILIDD KODRED

#	Article	IF	CITATIONS
1	Differences in nanoscale organization of regulatory active and inactive human chromatin. Biophysical Journal, 2022, 121, 977-990.	O.5	6
2	Effective dynamics of nucleosome configurations at the yeast PHO5 promoter. ELife, 2021, 10, .	6.0	6
3	Ruler elements in chromatin remodelers set nucleosome array spacing and phasing. Nature Communications, 2021, 12, 3232.	12.8	34
4	Genome information processing by the INO80 chromatin remodeler positions nucleosomes. Nature Communications, 2021, 12, 3231.	12.8	27
5	The Active Mechanism of Nucleosome Depletion by Poly(dA:dT) Tracts In Vivo. International Journal of Molecular Sciences, 2021, 22, 8233.	4.1	11
6	Beads on a string—nucleosome array arrangements and folding of the chromatin fiber. Nature Structural and Molecular Biology, 2020, 27, 109-118.	8.2	86
7	Absolute nucleosome occupancy map for the <i>Saccharomyces cerevisiae</i> genome. Genome Research, 2019, 29, 1996-2009.	5.5	71
8	BZLF1 interacts with chromatin remodelers promoting escape from latent infections with EBV. Life Science Alliance, 2019, 2, e201800108.	2.8	32
9	The nuclear actin-containing Arp8 module is a linker DNA sensor driving INO80 chromatin remodeling. Nature Structural and Molecular Biology, 2018, 25, 823-832.	8.2	63
10	Long noncoding RNA repertoire and targeting by nuclear exosome, cytoplasmic exonuclease, and RNAi in fission yeast. Rna, 2018, 24, 1195-1213.	3.5	45
11	Uncovering the forces between nucleosomes using DNA origami. Science Advances, 2016, 2, e1600974.	10.3	179
12	Exploring Nucleosome Unwrapping Using DNA Origami. Nano Letters, 2016, 16, 7891-7898.	9.1	52
13	Genomic Nucleosome Organization Reconstituted with Pure Proteins. Cell, 2016, 167, 709-721.e12.	28.9	227
14	Nucleosome Spacing Generated by ISWI and CHD1 Remodelers Is Constant Regardless of Nucleosome Density. Molecular and Cellular Biology, 2015, 35, 1588-1605.	2.3	52
15	Nucleosome positioning in yeasts: methods, maps, and mechanisms. Chromosoma, 2015, 124, 131-151.	2.2	45
16	Replication-guided nucleosome packing and nucleosome breathing expedite the formation of dense arrays. Nucleic Acids Research, 2014, 42, 13633-13645.	14.5	13
17	The RSC chromatin remodeling complex has a crucial role in the complete remodeler set for yeast <i>PHO5</i> promoter opening. Nucleic Acids Research, 2014, 42, 4270-4282.	14.5	35
18	The yeast PHO5 promoter: from single locus to systems biology of a paradigm for gene regulation through chromatin. Nucleic Acids Research, 2014, 42, 10888-10902.	14.5	51

Philipp Korber

#	Article	IF	CITATIONS
19	Mediator, TATA-binding Protein, and RNA Polymerase II Contribute to Low Histone Occupancy at Active Gene Promoters in Yeast. Journal of Biological Chemistry, 2014, 289, 14981-14995.	3.4	25
20	CHD1 remodelers regulate nucleosome spacing <i>in vitro</i> and align nucleosomal arrays over gene coding regions in <i>S. pombe</i> . EMBO Journal, 2012, 31, 4388-4403.	7.8	82
21	Genome-Wide In Vitro Reconstitution of Yeast Chromatin with In Vivo-Like Nucleosome Positioning. Methods in Enzymology, 2012, 513, 205-232.	1.0	28
22	Active nucleosome positioning beyond intrinsic biophysics is revealed by in vitro reconstitution. Biochemical Society Transactions, 2012, 40, 377-382.	3.4	18
23	Chromatin Modulation at the FLO11 Promoter of <i>Saccharomyces cerevisiae</i> by HDAC and Swi/Snf Complexes. Genetics, 2012, 191, 791-803.	2.9	35
24	In Vitro Reconstitution of In Vivo-Like Nucleosome Positioning on Yeast DNA. Methods in Molecular Biology, 2012, 833, 271-287.	0.9	6
25	The RSC chromatin remodelling enzyme has a unique role in directing the accurate positioning of nucleosomes. EMBO Journal, 2011, 30, 1277-1288.	7.8	51
26	A Packing Mechanism for Nucleosome Organization Reconstituted Across a Eukaryotic Genome. Science, 2011, 332, 977-980.	12.6	285
27	Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae. Nature Structural and Molecular Biology, 2010, 17, 251-257.	8.2	215
28	In Vitro Reconstitution of PHO5 Promoter Chromatin Remodeling Points to a Role for Activator-Nucleosome Competition In Vivo. Molecular and Cellular Biology, 2010, 30, 4060-4076.	2.3	16
29	Nucleosome dynamics and epigenetic stability. Essays in Biochemistry, 2010, 48, 63-74.	4.7	25
30	Differential Cofactor Requirements for Histone Eviction from Two Nucleosomes at the Yeast <i>PHO84</i> Promoter Are Determined by Intrinsic Nucleosome Stability. Molecular and Cellular Biology, 2009, 29, 2960-2981.	2.3	34
31	Genome-wide mapping of nucleosome positions in Schizosaccharomyces pombe. Methods, 2009, 48, 218-225.	3.8	36
32	Recycling of Aborted Ribosomal 50S Subunit-Nascent Chain-tRNA Complexes by the Heat Shock Protein Hsp15. Journal of Molecular Biology, 2009, 386, 1357-1367.	4.2	38
33	Redundancy of Chromatin Remodeling Pathways for the Induction of the Yeast PHO5 Promoter in Vivo. Journal of Biological Chemistry, 2007, 282, 27610-27621.	3.4	90
34	The Histone Chaperone Asf1 Increases the Rate of Histone Eviction at the Yeast PHO5 and PHO8 Promoters. Journal of Biological Chemistry, 2006, 281, 5539-5545.	3.4	96
35	Nucleosome Stability at the Yeast PHO5 and PHO8 Promoters Correlates with Differential Cofactor Requirements for Chromatin Opening. Molecular and Cellular Biology, 2005, 25, 10755-10767.	2.3	30
36	Histones Are Incorporated in trans during Reassembly of the Yeast PHO5 Promoter. Molecular Cell, 2005, 19, 279-285.	9.7	87

Philipp Korber

#	Article	IF	CITATIONS
37	In Vitro Assembly of the Characteristic Chromatin Organization at the Yeast PHO5 Promoter by a Replication-independent Extract System. Journal of Biological Chemistry, 2004, 279, 35113-35120.	3.4	31
38	Evidence for Histone Eviction in trans upon Induction of the Yeast PHO5 Promoter. Molecular and Cellular Biology, 2004, 24, 10965-10974.	2.3	85
39	SWRred Not Shaken. Cell, 2004, 117, 5-7.	28.9	56
40	Hsp15: a ribosome-associated heat shock protein. EMBO Journal, 2000, 19, 741-748.	7.8	82
41	Structure of Hsp15 reveals a novel RNA-binding motif. EMBO Journal, 2000, 19, 749-757.	7.8	56
42	A New Heat Shock Protein That Binds Nucleic Acids. Journal of Biological Chemistry, 1999, 274, 249-256.	3.4	54
43	Why is DsbA such an oxidizing disulfide catalyst?. Cell, 1995, 83, 947-955.	28.9	300