
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12093694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of Excitatory Amino Acid Transporterâ€2 (EAAT2) and glutamate in neurodegeneration: Opportunities for developing novel therapeutics. Journal of Cellular Physiology, 2011, 226, 2484-2493.	4.1	308
2	Targeting the Bcl-2 family for cancer therapy. Expert Opinion on Therapeutic Targets, 2013, 17, 61-75.	3.4	213
3	Gene Therapies for Cancer: Strategies, Challenges and Successes. Journal of Cellular Physiology, 2015, 230, 259-271.	4.1	179
4	Targeting Mcl-1 for the therapy of cancer. Expert Opinion on Investigational Drugs, 2011, 20, 1397-1411.	4.1	173
5	Autophagy. Advances in Cancer Research, 2013, 118, 61-95.	5.0	161
6	Bcl-2 Antiapoptotic Family Proteins and Chemoresistance in Cancer. Advances in Cancer Research, 2018, 137, 37-75.	5.0	153
7	The distribution and accumulation of fucoxanthin and its metabolites after oral administration in mice. British Journal of Nutrition, 2009, 102, 242-248.	2.3	138
8	Fucoxanthin induces cell cycle arrest at G0/G1 phase in human colon carcinoma cells through up-regulation of p21WAF1/Cip1. Biochimica Et Biophysica Acta - General Subjects, 2005, 1726, 328-335.	2.4	136
9	Growth inhibition of human hepatic carcinoma HepG2 cells by fucoxanthin is associated with down-regulation of cyclin D. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 743-749.	2.4	120
10	Multifunction Protein Staphylococcal Nuclease Domain Containing 1 (SND1) Promotes Tumor Angiogenesis in Human Hepatocellular Carcinoma through Novel Pathway That Involves Nuclear Factor κB and miR-221. Journal of Biological Chemistry, 2012, 287, 13952-13958.	3.4	119
11	Apogossypol derivative BI-97C1 (Sabutoclax) targeting Mcl-1 sensitizes prostate cancer cells to <i>mda</i> -7/IL-24–mediated toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8785-8790.	7.1	112
12	Mechanism of Autophagy to Apoptosis Switch Triggered in Prostate Cancer Cells by Antitumor Cytokine Melanoma Differentiation-Associated Gene 7/Interleukin-24. Cancer Research, 2010, 70, 3667-3676.	0.9	109
13	MDA-7/IL-24: Multifunctional Cancer Killing Cytokine. Advances in Experimental Medicine and Biology, 2014, 818, 127-153.	1.6	104
14	Astrocyte elevated gene-1 induces protective autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22243-22248.	7.1	101
15	Targeted Apoptotic Effects of Thymoquinone and Tamoxifen on XIAP Mediated Akt Regulation in Breast Cancer. PLoS ONE, 2013, 8, e61342.	2.5	100
16	Commercial-scale Preparation of Biofunctional Fucoxanthin from Waste Parts of Brown Sea Algae Laminalia japonica. Food Science and Technology Research, 2008, 14, 573-582.	0.6	99
17	mda-7/IL-24: A unique member of the IL-10 gene family promoting cancer-targeted toxicity. Cytokine and Growth Factor Reviews, 2010, 21, 381-391.	7.2	95
18	Oncogene <i>AEG-1</i> Promotes Glioma-Induced Neurodegeneration by Increasing Glutamate Excitotoxicity. Cancer Research, 2011, 71, 6514-6523.	0.9	95

#	Article	IF	CITATIONS
19	Human polynucleotide phosphorylase selectively and preferentially degrades microRNA-221 in human melanoma cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11948-11953.	7.1	94
20	MDA-9/Syntenin regulates protective autophagy in anoikis-resistant glioma stem cells. Proceedings of the United States of America, 2018, 115, 5768-5773.	7.1	91
21	AEG-1/MTDH/LYRIC. Advances in Cancer Research, 2013, 120, 75-111.	5.0	87
22	Fucoxanthin Induces Apoptosis in Osteoclast-like Cells Differentiated from RAW264.7 Cells. Journal of Agricultural and Food Chemistry, 2010, 58, 6090-6095.	5.2	79
23	Inhibition of radiation-induced glioblastoma invasion by genetic and pharmacological targeting of MDA-9/Syntenin. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 370-375.	7.1	79
24	MDA-9/Syntenin and IGFBP-2 Promote Angiogenesis in Human Melanoma. Cancer Research, 2013, 73, 844-854.	0.9	78
25	Insulin-like Growth Factor–Binding Protein-7 Functions as a Potential Tumor Suppressor in Hepatocellular Carcinoma. Clinical Cancer Research, 2011, 17, 6693-6701.	7.0	77
26	EGFR: An essential receptor tyrosine kinase-regulator of cancer stem cells. Advances in Cancer Research, 2020, 147, 161-188.	5.0	77
27	Novel ZnO hollow-nanocarriers containing paclitaxel targeting folate-receptors in a malignant pH-microenvironment for effective monitoring and promoting breast tumor regression. Scientific Reports, 2015, 5, 11760.	3.3	66
28	Suppression of miR-184 in malignant gliomas upregulates SND1 and promotes tumor aggressiveness. Neuro-Oncology, 2015, 17, 419-429.	1.2	65
29	Somatostatin receptor targeted liposomes with Diacerein inhibit IL-6 for breast cancer therapy. Cancer Letters, 2017, 388, 292-302.	7.2	65
30	Multi-nucleated cells use ROS to induce breast cancer chemo-resistance in vitro and in vivo. Oncogene, 2018, 37, 4546-4561.	5.9	61
31	MDA-9/syntenin: a positive gatekeeper of melanoma metastasis. Frontiers in Bioscience - Landmark, 2012, 17, 1.	3.0	58
32	Astrocyte Elevated Gene-1 Interacts with Akt Isoform 2 to Control Glioma Growth, Survival, and Pathogenesis. Cancer Research, 2014, 74, 7321-7332.	0.9	56
33	Raf Kinase Inhibitor RKIP Inhibits MDA-9/Syntenin-Mediated Metastasis in Melanoma. Cancer Research, 2012, 72, 6217-6226.	0.9	55
34	Novel Role of MDA-9/Syntenin in Regulating Urothelial Cell Proliferation by Modulating EGFR Signaling. Clinical Cancer Research, 2013, 19, 4621-4633.	7.0	54
35	MDA-9/syntenin is a key regulator of glioma pathogenesis. Neuro-Oncology, 2014, 16, 50-61.	1.2	51
36	Mcl-1 is an important therapeutic target for oral squamous cell carcinomas. Oncotarget, 2015, 6, 16623-16637.	1.8	50

#	Article	IF	CITATIONS
37	<i>mda-7/IL-24</i> Mediates Cancer Cell–Specific Death via Regulation of miR-221 and the Beclin-1 Axis. Cancer Research, 2017, 77, 949-959.	0.9	47
38	Vascular mimicry: Triggers, molecular interactions and in vivo models. Advances in Cancer Research, 2020, 148, 27-67.	5.0	47
39	Targeting tumor invasion: the roles of MDA-9/Syntenin. Expert Opinion on Therapeutic Targets, 2015, 19, 97-112.	3.4	46
40	Recent insights into apoptosis and toxic autophagy: The roles of MDA-7/IL-24, a multidimensional anti-cancer therapeutic. Seminars in Cancer Biology, 2020, 66, 140-154.	9.6	45
41	Enhanced delivery of <i>mdaâ€</i> 7/ILâ€24 using a serotype chimeric adenovirus (Ad.5/3) in combination with the apogossypol derivative Blâ€97C1 (Sabutoclax) improves therapeutic efficacy in low CAR colorectal cancer cells. Journal of Cellular Physiology, 2012, 227, 2145-2153.	4.1	43
42	Autophagy switches to apoptosis in prostate cancer cells infected with melanoma differentiation associated gene-7/interleukin-24 (<i>mda</i> -7/IL-24). Autophagy, 2011, 7, 1076-1077.	9.1	42
43	Novel Mechanism of MDA-7/IL-24 Cancer-Specific Apoptosis through SARI Induction. Cancer Research, 2014, 74, 563-574.	0.9	41
44	Pancreatic Cancer–Specific Cell Death Induced <i>In Vivo</i> by Cytoplasmic-Delivered Polyinosine–Polycytidylic Acid. Cancer Research, 2014, 74, 6224-6235.	0.9	38
45	Role of MDA-7/IL-24 a Multifunction Protein in Human Diseases. Advances in Cancer Research, 2018, 138, 143-182.	5.0	38
46	The Enigma of miRNA Regulation in Cancer. Advances in Cancer Research, 2017, 135, 25-52.	5.0	37
47	The MDA-9/Syntenin/IGF1R/STAT3 Axis Directs Prostate Cancer Invasion. Cancer Research, 2018, 78, 2852-2863.	0.9	37
48	Late SV40 Factor (LSF) Enhances Angiogenesis by Transcriptionally Up-regulating Matrix Metalloproteinase-9 (MMP-9). Journal of Biological Chemistry, 2012, 287, 3425-3432.	3.4	36
49	Targeting breast cancer-initiating/stem cells with melanoma differentiation-associated gene-7/interleukin-24. International Journal of Cancer, 2013, 133, n/a-n/a.	5.1	36
50	MDA-9/Syntenin (SDCBP) modulates small GTPases RhoA and Cdc42 <i>via</i> transforming growth factor β1 to enhance epithelial-mesenchymal transition in breast cancer. Oncotarget, 2016, 7, 80175-80189.	1.8	35
51	Pancreatic Cancer Combination Therapy Using a BH3 Mimetic and a Synthetic Tetracycline. Cancer Research, 2015, 75, 2305-2315.	0.9	34
52	MDA-7/IL-24 functions as a tumor suppressor gene <i>in vivo</i> in transgenic mouse models of breast cancer. Oncotarget, 2015, 6, 36928-36942.	1.8	34
53	<i>mdaâ€7</i> /ILâ€24 differentially regulates soluble and nuclear clusterin in prostate cancer. Journal of Cellular Physiology, 2012, 227, 1805-1813.	4.1	33
54	Design, Synthesis and Bioevaluation of an EphA2 Receptorâ€Based Targeted Delivery System. ChemMedChem, 2014, 9, 1403-1412.	3.2	31

#	Article	IF	CITATIONS
55	<i>mda-7/IL-24</i> Induces Cell Death in Neuroblastoma through a Novel Mechanism Involving AIF and ATM. Cancer Research, 2016, 76, 3572-3582.	0.9	30
56	Regulation of protective autophagy in anoikis-resistant glioma stem cells by SDCBP/MDA-9/Syntenin. Autophagy, 2018, 14, 1845-1846.	9.1	30
57	Targeting of EGFR, VEGFR2, and Akt by Engineered Dual Drug Encapsulated Mesoporous Silica–Gold Nanoclusters Sensitizes Tamoxifen-Resistant Breast Cancer. Molecular Pharmaceutics, 2018, 15, 2698-2713.	4.6	29
58	MDA-9/Syntenin (SDCBP): Novel gene and therapeutic target for cancer metastasis. Pharmacological Research, 2020, 155, 104695.	7.1	29
59	Genetically Engineered Mice as Experimental Tools to Dissect the Critical Events in Breast Cancer. Advances in Cancer Research, 2014, 121, 331-382.	5.0	28
60	Lumefantrine, an antimalarial drug, reverses radiation and temozolomide resistance in glioblastoma. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12324-12331.	7.1	28
61	Knockout of MDA-9/Syntenin (SDCBP) expression in the microenvironment dampens tumor-supporting inflammation and inhibits melanoma metastasis. Oncotarget, 2016, 7, 46848-46861.	1.8	28
62	MDA-9/Syntenin (SDCBP) Is a Critical Regulator of Chemoresistance, Survival and Stemness in Prostate Cancer Stem Cells. Cancers, 2020, 12, 53.	3.7	27
63	Therapy of prostate cancer using a novel cancer terminator virus and a small molecule BH-3 mimetic. Oncotarget, 2015, 6, 10712-10727.	1.8	27
64	Cancer Terminator Viruses and Approaches for Enhancing Therapeutic Outcomes. Advances in Cancer Research, 2012, 115, 1-38.	5.0	26
65	Examination of Epigenetic and other Molecular Factors Associated with mda-9/Syntenin Dysregulation in Cancer Through Integrated Analyses of Public Genomic Datasets. Advances in Cancer Research, 2015, 127, 49-121.	5.0	25
66	Prevention of epithelial to mesenchymal transition in colorectal carcinoma by regulation of the E-cadherin-β-catenin-vinculin axis. Cancer Letters, 2019, 452, 254-263.	7.2	25
67	Novel function of MDA-9/Syntenin (SDCBP) as a regulator of survival and stemness in glioma stem cells. Oncotarget, 2016, 7, 54102-54119.	1.8	25
68	Therapy of pancreatic cancer via an EphA2 receptor-targeted delivery of gemcitabine. Oncotarget, 2016, 7, 17103-17110.	1.8	25
69	<i>Abrus</i> agglutinin is a potent antiâ€proliferative and antiâ€angiogenic agent in human breast cancer. International Journal of Cancer, 2016, 139, 457-466.	5.1	24
70	Astrocyte Elevated Gene-1 Regulates β-Catenin Signaling to Maintain Glioma Stem-like Stemness and Self-Renewal. Molecular Cancer Research, 2017, 15, 225-233.	3.4	24
71	Regulation of neuroblastoma migration, invasion, and in vivo metastasis by genetic and pharmacological manipulation of MDA-9/Syntenin. Oncogene, 2019, 38, 6781-6793.	5.9	24
72	MDA-7/IL-24 regulates the miRNA processing enzyme DICER through downregulation of MITF. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5687-5692.	7.1	24

#	Article	IF	CITATIONS
73	Recombinant MDA-7/IL24 Suppresses Prostate Cancer Bone Metastasis through Downregulation of the Akt/Mcl-1 Pathway. Molecular Cancer Therapeutics, 2018, 17, 1951-1960.	4.1	23
74	MDA-9/Syntenin/SDCBP: new insights into a unique multifunctional scaffold protein. Cancer and Metastasis Reviews, 2020, 39, 769-781.	5.9	23
75	Sequential release of drugs from hollow manganese ferrite nanocarriers for breast cancer therapy. Journal of Materials Chemistry B, 2015, 3, 90-101.	5.8	22
76	Enhanced prostate cancer gene transfer and therapy using a novel serotype chimera cancer terminator virus (Ad.5/3- <i>CTV</i>). Journal of Cellular Physiology, 2013, 229, n/a-n/a.	4.1	21
77	Combining histone deacetylase inhibitors with MDA-7/IL-24 enhances killing of renal carcinoma cells. Cancer Biology and Therapy, 2013, 14, 1039-1049.	3.4	21
78	Histone Deacetylase Inhibitors Interact with Melanoma Differentiation Associated-7/Interleukin-24 to Kill Primary Human Glioblastoma Cells. Molecular Pharmacology, 2013, 84, 171-181.	2.3	21
79	In Vivo Modeling of Malignant Glioma. Advances in Cancer Research, 2014, 121, 261-330.	5.0	21
80	Molecular-Genetic Imaging of Cancer. Advances in Cancer Research, 2014, 124, 131-169.	5.0	20
81	Selected Approaches for Rational Drug Design and High Throughput Screening to Identify Anti-Cancer Molecules. Anti-Cancer Agents in Medicinal Chemistry, 2012, 12, 1143-1155.	1.7	19
82	Emerging strategies for the early detection and prevention of head and neck squamous cell cancer. Journal of Cellular Physiology, 2012, 227, 467-473.	4.1	19
83	New Insights Into Beclin-1: Evolution and Pan-Malignancy Inhibitor Activity. Advances in Cancer Research, 2018, 137, 77-114.	5.0	19
84	Suppression of Prostate Cancer Pathogenesis Using an MDA-9/Syntenin (SDCBP) PDZ1 Small-Molecule Inhibitor. Molecular Cancer Therapeutics, 2019, 18, 1997-2007.	4.1	19
85	Japanese Kelp (Kombu) Extract Suppressed the Formation of Aberrant Crypt Foci in Azoxymethane Challenged Mouse Colon. Journal of Clinical Biochemistry and Nutrition, 2006, 38, 119-125.	1.4	18
86	Prospects of Gene Therapy to Treat Melanoma. Advances in Cancer Research, 2018, 138, 213-237.	5.0	17
87	MDA-9/Syntenin: An emerging global molecular target regulating cancer invasion and metastasis. Advances in Cancer Research, 2019, 144, 137-191.	5.0	17
88	Pharmacological inhibition of MDA-9/Syntenin blocks breast cancer metastasis through suppression of IL-1β. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	16
89	Transcriptional regulation of HSPB1 by Friend leukemia integration-1 factor modulates radiation and temozolomide resistance in glioblastoma. Oncotarget, 2020, 11, 1097-1108.	1.8	15
90	Suppression of Her2/Neu mammary tumor development in <i>mda-7/IL-24</i> transgenic mice. Oncotarget, 2015, 6, 36943-36954.	1.8	14

#	Article	IF	CITATIONS
91	Astrocyte elevated gene-1 activates AMPK in response to cellular metabolic stress and promotes protective autophagy. Autophagy, 2011, 7, 547-548.	9.1	13
92	Cancer terminator viruses (<i>CTV</i>): A better solution for viralâ€based therapy of cancer. Journal of Cellular Physiology, 2018, 233, 5684-5695.	4.1	13
93	Screening of the Prime bioactive compounds from Aloe vera as potential anti-proliferative agents targeting DNA. Computers in Biology and Medicine, 2022, 141, 105052.	7.0	13
94	Innovative approaches for enhancing cancer gene therapy. Discovery Medicine, 2013, 15, 309-17.	0.5	13
95	Rethinking Glioblastoma Therapy: MDA-9/Syntenin Targeted Small Molecule. ACS Chemical Neuroscience, 2019, 10, 1121-1123.	3.5	12
96	The quest to develop an effective therapy for neuroblastoma. Journal of Cellular Physiology, 2021, 236, 7775-7791.	4.1	12
97	Human Polynucleotide Phosphorylase (hPNPaseold-35). Advances in Cancer Research, 2013, 119, 161-190.	5.0	11
98	Identification of Genes Potentially Regulated by Human Polynucleotide Phosphorylase (hPNPaseold-35) Using Melanoma as a Model. PLoS ONE, 2013, 8, e76284.	2.5	11
99	AEG-1–AKT2: A novel complex controlling the aggressiveness of glioblastoma. Molecular and Cellular Oncology, 2015, 2, e995008.	0.7	11
100	The Quest for an Effective Treatment for an Intractable Cancer. Advances in Cancer Research, 2015, 127, 283-306.	5.0	10
101	Analysis of Global Changes in Gene Expression Induced by Human Polynucleotide Phosphorylase (<i>hPNPase^{oldâ€35}</i>). Journal of Cellular Physiology, 2014, 229, 1952-1962.	4.1	9
102	Reversing Translational Suppression and Induction of Toxicity in Pancreatic Cancer Cells Using a Chemoprevention Gene Therapy Approach. Molecular Pharmacology, 2015, 87, 286-295.	2.3	8
103	Novel therapy of prostate cancer employing a combination of viral-based immunotherapy and a small molecule BH3 mimetic. OncoImmunology, 2016, 5, e1078059.	4.6	7
104	Identification of Annexin A2 as a key mTOR target to induce roller coaster pattern of autophagy fluctuation in stress. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165952.	3.8	6
105	Mechanism of internalization of MDA-7/IL-24 protein and its cognate receptors following ligand-receptor docking. Oncotarget, 2019, 10, 5103-5117.	1.8	6
106	Autophagy and senescence: Insights from normal and cancer stem cells. Advances in Cancer Research, 2021, 150, 147-208.	5.0	5
107	Metabolic control of cancer progression as novel targets for therapy. Advances in Cancer Research, 2021, 152, 103-177.	5.0	5
108	Engineering T Cells to Express Tumoricidal MDA-7/IL24 Enhances Cancer Immunotherapy. Cancer Research, 2021, 81, 2429-2441.	0.9	5

#	Article	IF	CITATIONS
109	GAP junctions: multifaceted regulators of neuronal differentiation. Tissue Barriers, 2022, 10, 1982349.	3.2	5
110	SARI inhibits growth and reduces survival of oral squamous cell carcinomas (OSCC) by inducing endoplasmic reticulum stress. Life Sciences, 2021, 287, 120141.	4.3	5
111	Insights into the Mechanisms of Action of MDA-7/IL-24: A Ubiquitous Cancer-Suppressing Protein. International Journal of Molecular Sciences, 2022, 23, 72.	4.1	5
112	Theranostic Tripartite Cancer Terminator Virus for Cancer Therapy and Imaging. Cancers, 2021, 13, 857.	3.7	4
113	Non-BRAF targeted therapies for melanoma: protein kinase inhibitors in Phase II clinical trials. Expert Opinion on Investigational Drugs, 2014, 23, 489-500.	4.1	3
114	Characterization of the canine mda-7 gene, transcripts and expression patterns. Gene, 2014, 547, 23-33.	2.2	2
115	Evolutionary dynamics of Polynucelotide phosphorylases. Molecular Phylogenetics and Evolution, 2014, 73, 77-86.	2.7	2
116	Reply to Yoshida: Delineating critical roles of MDA-9 in protective autophagy-mediated anoikis resistance in human glioma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7654-E7655.	7.1	2
117	Enhanced Cancer Therapy Using an Engineered Designer Cytokine Alone and in Combination With an Immune Checkpoint Inhibitor. Frontiers in Oncology, 2022, 12, 812560.	2.8	2
118	Wnt7a and miR-370-3p: new contributors to bladder cancer invasion. Biotarget, 2018, 2, 14-14.	0.5	1
119	Conversion of a Non-Cancer-Selective Promoter into a Cancer-Selective Promoter. Cancers, 2022, 14, 1497.	3.7	1
120	How does the oncogene astrocyte elevated gene-1 (AEG-1) augment glioma progression?. Future Neurology, 2015, 10, 293-296.	0.5	0