
Kamel Jabbari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1209270/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The <i>Chlamydomonas</i> Genome Reveals the Evolution of Key Animal and Plant Functions. Science, 2007, 318, 245-250.	12.6	2,354
2	Early allopolyploid evolution in the post-Neolithic <i>Brassica napus</i> oilseed genome. Science, 2014, 345, 950-953.	12.6	2,089
3	The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature, 2008, 456, 239-244.	27.8	1,458
4	The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature, 2012, 488, 213-217.	27.8	1,049
5	Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11647-11652.	7.1	809
6	The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature, 2010, 465, 617-621.	27.8	774
7	Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nature Biotechnology, 2014, 32, 656-662.	17.5	572
8	The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7705-7710.	7.1	563
9	Genome structure and metabolic features in the red seaweed <i>Chondrus crispus</i> shed light on evolution of the Archaeplastida. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5247-5252.	7.1	307
10	Cytosine methylation and CpG, TpG (CpA) and TpA frequencies. Gene, 2004, 333, 143-149.	2.2	233
11	Transcription factor families inferred from genome sequences of photosynthetic stramenopiles. New Phytologist, 2010, 188, 52-66.	7.3	126
12	Comparative Genomics of the Pennate Diatom Phaeodactylum tricornutum. Plant Physiology, 2005, 137, 500-513.	4.8	122
13	<i>DEPDC5</i> mutations in genetic focal epilepsies of childhood. Annals of Neurology, 2014, 75, 788-792.	5.3	105
14	Similar integration but different stability of Alus and LINEs in the human genome. Gene, 2001, 276, 39-45.	2.2	101
15	Evolutionary changes in CpG and methylation levels in the genome of vertebrates. Gene, 1997, 205, 109-118.	2.2	98
16	CpG doublets, CpG islands and Alu repeats in long human DNA sequences from different isochore families. Gene, 1998, 224, 123-128.	2.2	97
17	IDENTIFICATION AND COMPARATIVE GENOMIC ANALYSIS OF SIGNALING AND REGULATORY COMPONENTS IN THE DIATOMTHALASSIOSIRA PSEUDONANA. Journal of Phycology, 2007, 43, 585-604.	2.3	87
18	The correlation of protein hydropathy with the base composition of coding sequences. Gene, 1999, 238, 3-14.	2.2	82

KAMEL JABBARI

#	Article	IF	CITATIONS
19	Rare coding variants in genes encoding GABAA receptors in genetic generalised epilepsies: an exome-based case-control study. Lancet Neurology, The, 2018, 17, 699-708.	10.2	67
20	The Streamlined Genome of Phytomonas spp. Relative to Human Pathogenic Kinetoplastids Reveals a Parasite Tailored for Plants. PLoS Genetics, 2014, 10, e1004007.	3.5	66
21	Compositional Properties of Homologous Coding Sequences from Plants. Journal of Molecular Evolution, 1998, 46, 45-53.	1.8	65
22	Synonymous Codon Choices in the Extremely GC-Poor Genome of Plasmodium falciparum: Compositional Constraints and Translational Selection. Journal of Molecular Evolution, 1999, 49, 27-35.	1.8	61
23	An Isochore Framework Underlies Chromatin Architecture. PLoS ONE, 2017, 12, e0168023.	2.5	55
24	Synonymous and Nonsynonymous Substitutions in Mammalian Genes: Intragenic Correlations. Journal of Molecular Evolution, 1998, 46, 37-44.	1.8	53
25	Gene Expression, Amino Acid Conservation, and Hydrophobicity Are the Main Factors Shaping Codon Preferences in Mycobacterium tuberculosis and Mycobacterium leprae. Journal of Molecular Evolution, 2000, 50, 45-55.	1.8	49
26	Leveraging the Power of High Performance Computing for Next Generation Sequencing Data Analysis: Tricks and Twists from a High Throughput Exome Workflow. PLoS ONE, 2015, 10, e0126321.	2.5	37
27	Evolutionary Genomics of Vertebrates and Its Implications. Annals of the New York Academy of Sciences, 1999, 870, 81-94.	3.8	34
28	The new genes of rice: a closer look. Trends in Plant Science, 2004, 9, 281-285.	8.8	33
29	The distribution of genes in the Drosophila genome. Gene, 2000, 247, 287-292.	2.2	31
30	Correlations of nucleotide substitution rates and base composition of mammalian coding sequences with protein structure. Gene, 1999, 238, 23-31.	2.2	28
31	Methylation patterns in the isochores of vertebrate genomes. Gene, 1997, 205, 119-124.	2.2	26
32	DNA sequence-dependent chromatin architecture and nuclear hubs formation. Scientific Reports, 2019, 9, 14646.	3.3	25
33	Exome-wide analysis of mutational burden in patients with typical and atypical Rolandic epilepsy. European Journal of Human Genetics, 2018, 26, 258-264.	2.8	22
34	Compositional features of eukaryotic genomes for checking predicted genes. Briefings in Bioinformatics, 2003, 4, 43-52.	6.5	18
35	Body temperature and evolutionary genomics of vertebrates: a lesson from the genomes of Takifugu rubripes and Tetraodon nigroviridis. Gene, 2004, 333, 179-181.	2.2	18
36	The Ectocarpus Genome and Brown Algal Genomics. Advances in Botanical Research, 2012, 64, 141-184.	1.1	18

KAMEL JABBARI

#	Article	IF	CITATIONS
37	A common genomic code for chromatin architecture and recombination landscape. PLoS ONE, 2019, 14, e0213278.	2.5	18
38	lsochore conservation between MHC regions on human chromosome 6 and mouse chromosome 17. FEBS Letters, 2002, 511, 175-177.	2.8	17
39	Compositional Gene Landscapes in Vertebrates. Genome Research, 2004, 14, 886-892.	5.5	16
40	The major shifts of human duplicated genes. Gene, 2003, 317, 203-208.	2.2	15
41	The correlation between GC3 and hydropathy in human genes. Gene, 2003, 317, 137-140.	2.2	13
42	Synonymous and Nonsynonymous Substitutions in Genes from Gramineae: Intragenic Correlations. Journal of Molecular Evolution, 1999, 49, 330-342.	1.8	12
43	Incorrectly predicted genes in rice?. Gene, 2004, 333, 187-188.	2.2	12
44	The evolution of introns in human duplicated genes. Gene, 2006, 365, 41-47.	2.2	12
45	A genomic view on epilepsy and autism candidate genes. Genomics, 2016, 108, 31-36.	2.9	11
46	GC3 heterogeneity and body temperature in vertebrates. Gene, 2003, 317, 161-163.	2.2	10
47	The Diverging Routes of BORIS and CTCF: An Interactomic and Phylogenomic Analysis. Life, 2018, 8, 4.	2.4	9
48	Comparative genomics of Anopheles gambiae and Drosophila melanogaster. Gene, 2004, 333, 183-186.	2.2	8
49	Simple proteomic checks for detecting noncoding RNA. Proteomics, 2007, 7, 361-363.	2.2	6
50	Rare gene deletions in genetic generalized and Rolandic epilepsies. PLoS ONE, 2018, 13, e0202022.	2.5	6