Jen-Chieh Chuang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12092196/publications.pdf

Version: 2024-02-01

42 papers 3,528 citations

236925 25 h-index 243625 44 g-index

45 all docs

45 docs citations

times ranked

45

5076 citing authors

#	Article	IF	CITATIONS
1	Direct Insulin and Leptin Action on Pro-opiomelanocortin Neurons Is Required for Normal Glucose Homeostasis and Fertility. Cell Metabolism, 2010, 11, 286-297.	16.2	321
2	Ghrelin Increases the Rewarding Value of High-Fat Diet in an Orexin-Dependent Manner. Biological Psychiatry, 2010, 67, 880-886.	1.3	314
3	Direct leptin action on POMC neurons regulates glucose homeostasis and hepatic insulin sensitivity in mice. Journal of Clinical Investigation, 2012, 122, 1000-1009.	8.2	283
4	Ghrelin mediates stress-induced food-reward behavior in mice. Journal of Clinical Investigation, 2011, 121, 2684-2692.	8.2	279
5	Arcuate AgRP neurons mediate orexigenic and glucoregulatory actions of ghrelin. Molecular Metabolism, 2014, 3, 64-72.	6.5	206
6	Leptin therapy improves insulin-deficient type 1 diabetes by CNS-dependent mechanisms in mice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17391-17396.	7.1	190
7	Arid1a Has Context-Dependent Oncogenic and Tumor Suppressor Functions in Liver Cancer. Cancer Cell, 2017, 32, 574-589.e6.	16.8	172
8	Impaired insulin secretion and glucose intolerance in synaptotagmin-7 null mutant mice. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3992-3997.	7.1	165
9	Combination Therapies Including Cilofexor and Firsocostat for Bridging Fibrosis and Cirrhosis Attributable to NASH. Hepatology, 2021, 73, 625-643.	7.3	156
10	Suppression of the SWI/SNF Component Arid1a Promotes Mammalian Regeneration. Cell Stem Cell, 2016, 18, 456-466.	11.1	112
11	Ghrelin Directly Stimulates Glucagon Secretion from Pancreatic α-Cells. Molecular Endocrinology, 2011, 25, 1600-1611.	3.7	108
12	Chronic social defeat stress disrupts regulation of lipid synthesis. Journal of Lipid Research, 2010, 51, 1344-1353.	4.2	104
13	A $\hat{1}^2$ 3-Adrenergic-Leptin-Melanocortin Circuit Regulates Behavioral and Metabolic Changes Induced by Chronic Stress. Biological Psychiatry, 2010, 67, 1075-1082.	1.3	104
14	Ghrelin's Roles in Stress, Mood, and Anxiety Regulation. International Journal of Peptides, 2010, 2010, 1-5.	0.7	91
15	5-HT2CRs expressed by pro-opiomelanocortin neurons regulate insulin sensitivity in liver. Nature Neuroscience, 2010, 13, 1457-1459.	14.8	87
16	Glucose-mediated control of ghrelin release from primary cultures of gastric mucosal cells. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E1300-E1310.	3.5	84
17	Functional implications of limited leptin receptor and ghrelin receptor coexpression in the brain. Journal of Comparative Neurology, 2012, 520, 281-294.	1.6	76
18	Arid1b haploinsufficient mice reveal neuropsychiatric phenotypes and reversible causes of growth impairment. ELife, 2017, 6 , $.$	6.0	74

#	Article	IF	CITATIONS
19	SWI/SNF component <i>ARID1A</i> restrains pancreatic neoplasia formation. Gut, 2019, 68, 1259-1270.	12.1	63
20	Research Resource: Nuclear Hormone Receptor Expression in the Endocrine Pancreas. Molecular Endocrinology, 2008, 22, 2353-2363.	3.7	56
21	Hindbrain Ghrelin Receptor Signaling Is Sufficient to Maintain Fasting Glucose. PLoS ONE, 2012, 7, e44089.	2.5	52
22	Differential effects of chronic social stress and fluoxetine on meal patterns in mice. Appetite, 2013, 64, 81-88.	3.7	46
23	Liver X Receptor Agonists Augment Human Islet Function through Activation of Anaplerotic Pathways and Glycerolipid/Free Fatty Acid Cycling. Journal of Biological Chemistry, 2010, 285, 5392-5404.	3.4	38
24	1,25-Dihydroxyvitamin D3 enhances glucose-stimulated insulin secretion in mouse and human islets: a role for transcriptional regulation of voltage-gated calcium channels by the vitamin D receptor. Journal of Steroid Biochemistry and Molecular Biology, 2019, 185, 17-26.	2.5	37
25	Metabolic reprogramming of the intestinal microbiome with functional bile acid changes underlie the development of NAFLD. Hepatology, 2022, 76, 1811-1824.	7.3	30
26	Dual ARID1A/ARID1B loss leads to rapid carcinogenesis and disruptive redistribution of BAF complexes. Nature Cancer, 2020, 1, 909-922.	13.2	24
27	\hat{l}^21 -adrenergic receptors mediate plasma acyl-ghrelin elevation and depressive-like behavior induced by chronic psychosocial stress. Neuropsychopharmacology, 2019, 44, 1319-1327.	5.4	23
28	Role of Calcium and EPAC in Norepinephrine-Induced Ghrelin Secretion. Endocrinology, 2014, 155, 98-107.	2.8	19
29	Impact of physiological levels of chenodeoxycholic acid supplementation on intestinal and hepatic bile acid and cholesterol metabolism in Cyp7a1-deficient mice. Steroids, 2015, 93, 87-95.	1.8	19
30	Suppression of brain cholesterol synthesis in male Mecp2-deficient mice is age dependent and not accompanied by a concurrent change in the rate of fatty acid synthesis. Brain Research, 2017, 1654, 77-84.	2.2	19
31	Arid1a Loss Drives Nonalcoholic Steatohepatitis in Mice Through Epigenetic Dysregulation of Hepatic Lipogenesis and Fatty Acid Oxidation. Hepatology, 2019, 69, 1931-1945.	7.3	19
32	Characterization of Gastric and Neuronal Histaminergic Populations Using a Transgenic Mouse Model. PLoS ONE, 2013, 8, e60276.	2.5	18
33	Translational Neuroscience Approaches to Hyperphagia. Journal of Neuroscience, 2010, 30, 11549-11554.	3.6	14
34	Fenofibrate Mitigates Hypertriglyceridemia in Nonalcoholic Steatohepatitis Patients Treated With Cilofexor/Firsocostat. Clinical Gastroenterology and Hepatology, 2023, 21, 143-152.e3.	4.4	14
35	Sustained and selective suppression of intestinal cholesterol synthesis by Ro 48-8071, an inhibitor of 2,3-oxidosqualene:lanosterol cyclase, in the BALB/c mouse. Biochemical Pharmacology, 2014, 88, 351-363.	4.4	12
36	Ezetimibe markedly attenuates hepatic cholesterol accumulation and improves liver function in the lysosomal acid lipase-deficient mouse, a model for cholesteryl ester storage disease. Biochemical and Biophysical Research Communications, 2014, 443, 1073-1077.	2.1	11

#	Article	IF	CITATION
37	PRD125, a Potent and Selective Inhibitor of Sterol <i>O</i> -Acyltransferase 2 Markedly Reduces Hepatic Cholesteryl Ester Accumulation and Improves Liver Function in Lysosomal Acid Lipase-Deficient Mice. Journal of Pharmacology and Experimental Therapeutics, 2015, 355, 159-167.	2.5	10
38	Quantitation of the rates of hepatic and intestinal cholesterol synthesis in lysosomal acid lipase-deficient mice before and during treatment with ezetimibe. Biochemical Pharmacology, 2017, 135, 116-125.	4.4	8
39	Identification of Correlative Shifts in Indices of Brain Cholesterol Metabolism in the C57BL6/ <i>Mecp2</i> ^{<i>tml.1Bird</i>} Mouse, a Model for Rett Syndrome. Lipids, 2018, 53, 363-373.	1.7	8
40	Measurement of Rates of Cholesterol and Fatty Acid Synthesis In Vivo Using Tritiated Water. Methods in Molecular Biology, 2017, 1583, 241-256.	0.9	7
41	Impact of loss of SOAT2 function on disease progression in the lysosomal acid lipase-deficient mouse. Steroids, 2018, 130, 7-14.	1.8	6
42	Impact of the loss of caveolin-1 on lung mass and cholesterol metabolism in mice with and without the lysosomal cholesterol transporter, Niemann–Pick type C1. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 995-1002.	2.4	5