
Doreen A Cantrell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1209061/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protein synthesis, degradation, and energy metabolism in T cell immunity. Cellular and Molecular Immunology, 2022, 19, 303-315.	10.5	38
2	Nrf2 activation reprograms macrophage intermediary metabolism and suppresses the type I interferon response. IScience, 2022, 25, 103827.	4.1	51
3	Extracellular signal-regulated kinase (ERK) pathway control of CD8+ T cell differentiation. Biochemical Journal, 2021, 478, 79-98.	3.7	17
4	ÂÂÂÂÂÂÂA type I IFN, prothrombotic hyperinflammatory neutrophil signature is distinct for COVID-19 ARDSÂÂÂ . Wellcome Open Research, 2021, 6, 38.	1.8	29
5	Hypoxia drives murine neutrophil protein scavenging to maintain central carbon metabolism. Journal of Clinical Investigation, 2021, 131, .	8.2	21
6	ÂÂÂÂÂÂÂA type I IFN, prothrombotic hyperinflammatory neutrophil signature is distinct for COVID-19 ARDSÂÂÂ . Wellcome Open Research, 2021, 6, 38.	1.8	35
7	Phosphoinositide 3-Kinase p110 Delta Differentially Restrains and Directs NaÃ⁻ve Versus Effector CD8+ÂT Cell Transcriptional Programs. Frontiers in Immunology, 2021, 12, 691997.	4.8	7
8	Quantitative Analyses Reveal How Hypoxia Reconfigures the Proteome of Primary Cytotoxic T Lymphocytes. Frontiers in Immunology, 2021, 12, 712402.	4.8	10
9	Mitochondrial translation is required for sustained killing by cytotoxic T cells. Science, 2021, 374, eabe9977.	12.6	55
10	Of Mosaicism and Mechanisms: How JAK1 Goes Awry. Immunity, 2020, 53, 481-484.	14.3	0
11	The active inner life of naive T cells. Nature Immunology, 2020, 21, 827-828.	14.5	4
12	Single Cell Glucose Uptake Assays: A Cautionary Tale. Immunometabolism, 2020, 2, e200029.	1.6	45
13	Quantitative analysis of how Myc controls T cell proteomes and metabolic pathways during T cell activation. ELife, 2020, 9, .	6.0	126
14	Phenformin, But Not Metformin, Delays Development of T Cell Acute Lymphoblastic Leukemia/Lymphoma via Cell-Autonomous AMPK Activation. Cell Reports, 2019, 27, 690-698.e4.	6.4	54
15	Move to metabolism. Nature Reviews Immunology, 2019, 19, 270-270.	22.7	2
16	Quantitative analysis of T cell proteomes and environmental sensors during T cell differentiation. Nature Immunology, 2019, 20, 1542-1554.	14.5	152
17	Antigen receptor control of methionine metabolism in T cells. ELife, 2019, 8, .	6.0	132
18	Signaling and Function of Interleukin-2 in T Lymphocytes. Annual Review of Immunology, 2018, 36, 411-433	21.8	539

#	Article	IF	CITATIONS
19	Interleukin-2 shapes the cytotoxic T cell proteome and immune environment–sensing programs. Science Signaling, 2018, 11, .	3.6	67
20	Single cell analysis of kynurenine and System L amino acid transport in T cells. Nature Communications, 2018, 9, 1981.	12.8	128
21	Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice. Nature Communications, 2018, 9, 2341.	12.8	238
22	Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. Nature Immunology, 2016, 17, 712-720.	14.5	265
23	Mathematical Models for Immunology: Current State of the Art and Future Research Directions. Bulletin of Mathematical Biology, 2016, 78, 2091-2134.	1.9	143
24	Phosphoproteomic Analyses of Interleukin 2 Signaling Reveal Integrated JAK Kinase-Dependent and -Independent Networks in CD8 + T Cells. Immunity, 2016, 45, 685-700.	14.3	68
25	Potent and selective chemical probe of hypoxic signalling downstream of HIF-α hydroxylation via VHL inhibition. Nature Communications, 2016, 7, 13312.	12.8	167
26	The cytotoxic T cell proteome and its shaping by the kinase mTOR. Nature Immunology, 2016, 17, 104-112.	14.5	192
27	Single cell tuning of Myc expression by antigen receptor signal strength and interleukinâ€2 in T lymphocytes. EMBO Journal, 2015, 34, 2008-2024.	7.8	135
28	Signaling in Lymphocyte Activation. Cold Spring Harbor Perspectives in Biology, 2015, 7, a018788.	5.5	74
29	Environmental and Metabolic Sensors That Control T Cell Biology. Frontiers in Immunology, 2015, 6, 99.	4.8	45
30	ICOS Coreceptor Signaling Inactivates the Transcription Factor FOXO1 to Promote Tfh Cell Differentiation. Immunity, 2015, 42, 239-251.	14.3	204
31	Metabolic regulation of hepatitis B immunopathology by myeloid-derived suppressor cells. Nature Medicine, 2015, 21, 591-600.	30.7	226
32	Adenosine-Mono-Phosphate-Activated Protein Kinase-Independent Effects of Metformin in T Cells. PLoS ONE, 2014, 9, e106710.	2.5	31
33	Quantitative Phosphoproteomics of Cytotoxic T Cells to Reveal Protein Kinase D 2 Regulated Networks. Molecular and Cellular Proteomics, 2014, 13, 3544-3557.	3.8	15
34	Protein kinase D2 is a digital amplifier of T cell receptor–stimulated diacylglycerol signaling in naÃ⁻ve CD8 ⁺ T cells. Science Signaling, 2014, 7, ra99.	3.6	33
35	Serine-threonine kinases in TCR signaling. Nature Immunology, 2014, 15, 808-814.	14.5	79
36	The BAFF Receptor Transduces Survival Signals by Co-opting the B Cell Receptor Signaling Pathway. Immunity, 2013, 38, 475-488.	14.3	186

#	Article	IF	CITATIONS
37	Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nature Immunology, 2013, 14, 500-508.	14.5	732
38	<scp>AMPK</scp> α1: A glucose sensor that controls <scp>CD</scp> 8 <scp>T</scp> ell memory. European Journal of Immunology, 2013, 43, 889-896.	2.9	201
39	LKB1 Mediates the Development of Conventional and Innate T Cells via AMP-Dependent Kinase Autonomous Pathways. PLoS ONE, 2013, 8, e60217.	2.5	16
40	The Impact of KLF2 Modulation on the Transcriptional Program and Function of CD8 T Cells. PLoS ONE, 2013, 8, e77537.	2.5	30
41	Protein kinase D2 has a restricted but critical role in T-cell antigen receptor signalling in mature T-cells. Biochemical Journal, 2012, 442, 649-659.	3.7	20
42	PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. Journal of Experimental Medicine, 2012, 209, 2441-2453.	8.5	518
43	Protein kinase <scp>D</scp> isoforms are dispensable for integrinâ€mediated lymphocyte adhesion and homing to lymphoid tissues. European Journal of Immunology, 2012, 42, 1316-1326.	2.9	13
44	PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8 ⁺ T cells. Journal of Cell Biology, 2012, 199, i8-i8.	5.2	1
45	Protein kinase C mediates platelet secretion and thrombus formation through protein kinase D2. Blood, 2011, 118, 416-424.	1.4	49
46	Phosphoproteomic analysis reveals an intrinsic pathway for the regulation of histone deacetylase 7 that controls the function of cytotoxic T lymphocytes. Nature Immunology, 2011, 12, 352-361.	14.5	95
47	Metabolism, migration and memory in cytotoxic T cells. Nature Reviews Immunology, 2011, 11, 109-117.	22.7	203
48	Protein Kinase B Controls Transcriptional Programs that Direct Cytotoxic T Cell Fate but Is Dispensable for T Cell Metabolism. Immunity, 2011, 34, 224-236.	14.3	235
49	The Coordination of T-cell Function by Serine/Threonine Kinases. Cold Spring Harbor Perspectives in Biology, 2011, 3, a002261-a002261.	5.5	18
50	LKB1 is essential for the proliferation of Tâ€cell progenitors and mature peripheral T cells. European Journal of Immunology, 2010, 40, 242-253.	2.9	81
51	Unique functions for protein kinase D1 and protein kinase D2 in mammalian cells. Biochemical Journal, 2010, 432, 153-163.	3.7	73
52	Phosphoinositide 3â€kinase and the mammalian target of rapamycin pathways control T cell migration. Annals of the New York Academy of Sciences, 2010, 1183, 149-157.	3.8	71
53	Temporal Differences in the Dependency on Phosphoinositide-Dependent Kinase 1 Distinguish the Development of Invariant Vα14 NKT Cells and Conventional T Cells. Journal of Immunology, 2010, 185, 5973-5982.	0.8	22
54	Exploring the Biological Role of Kruppel-Like Factor 2 In Cytotoxic T Lymphocytes. Blood, 2010, 116, 2783-2783.	1.4	8

#	Article	IF	CITATIONS
55	Phosphoinositide (3,4,5)-Triphosphate Binding to Phosphoinositide-Dependent Kinase 1 Regulates a Protein Kinase B/Akt Signaling Threshold That Dictates T-Cell Migration, Not Proliferation. Molecular and Cellular Biology, 2009, 29, 5952-5962.	2.3	69
56	Phosphoinositide-dependent kinase 1 controls migration and malignant transformation but not cell growth and proliferation in PTEN-null lymphocytes. Journal of Experimental Medicine, 2009, 206, 2441-2454.	8.5	67
57	New insights into the regulation and function of serine/threonine kinases in T lymphocytes. Immunological Reviews, 2009, 228, 241-252.	6.0	27
58	Phosphoinositide-dependent kinase 1 controls migration and malignant transformation but not cell growth and proliferation in PTEN-null lymphocytes. Journal of Cell Biology, 2009, 187, i1-i1.	5.2	0
59	Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking. Nature Immunology, 2008, 9, 513-521.	14.5	364
60	T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7797-7802.	7.1	747
61	Protein kinase D enzymes are dispensable for proliferation, survival and antigen receptor-regulated NFκB activity in vertebrate B-cells. FEBS Letters, 2007, 581, 1377-1382.	2.8	21
62	The RhoA transcriptional program in preâ€₹ cells. FEBS Letters, 2007, 581, 4309-4317.	2.8	9
63	Notch-induced T cell development requires phosphoinositide-dependent kinase 1. EMBO Journal, 2007, 26, 3441-3450.	7.8	130
64	Phosphoinositideâ€dependent protein kinaseâ€1 (PDK1)â€independent activation of the protein kinase C substrate, protein kinase D. FEBS Letters, 2007, 581, 3494-3498.	2.8	6
65	Phosphoinositide-dependent kinase l (PDK1) haplo-insufficiency inhibits production of alpha/beta (α/β) but not gamma delta (γ/Π) T lymphocytes. FEBS Letters, 2006, 580, 2135-2140.	2.8	11
66	Antigen receptor regulation of phosphoinositide-dependent kinase 1 pathways during thymocyte development. FEBS Letters, 2006, 580, 5845-5850.	2.8	11
67	Diacylglycerol and Protein Kinase D Localization during T Lymphocyte Activation. Immunity, 2006, 24, 535-546.	14.3	118
68	Differential regulation of T-cell growth by IL-2 and IL-15. Blood, 2006, 108, 600-608.	1.4	145
69	The role of serine/threonine kinases in T-cell activation. Current Opinion in Immunology, 2006, 18, 314-320.	5.5	15
70	Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes. Journal of Experimental Medicine, 2006, 203, 1665-1670.	8.5	298
71	Essential Role for Protein Kinase D Family Kinases in the Regulation of Class II Histone Deacetylases in B Lymphocytes. Molecular and Cellular Biology, 2006, 26, 1569-1577.	2.3	133
72	Differential Requirement for RhoA GTPase Depending on the Cellular Localization of Protein Kinase D. Journal of Biological Chemistry, 2006, 281, 25089-25096.	3.4	17

#	Article	IF	CITATIONS
73	Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes. Journal of Cell Biology, 2006, 174, i4-i4.	5.2	0
74	Integrin Regulation by RhoA in Thymocytes. Journal of Immunology, 2005, 175, 350-357.	0.8	61
75	Dual Phospholipase C/Diacylglycerol Requirement for Protein Kinase D1 Activation in Lymphocytes. Journal of Biological Chemistry, 2005, 280, 6245-6251.	3.4	26
76	Sustained IL-12 Signaling Is Required for Th1 Development. Journal of Immunology, 2004, 172, 61-69.	0.8	169
77	The serine kinase phosphoinositide-dependent kinase 1 (PDK1) regulates T cell development. Nature Immunology, 2004, 5, 539-545.	14.5	111
78	Protein kinase C and beyond. Nature Immunology, 2004, 5, 785-790.	14.5	268
79	Identification of pro-interleukin 16 as a novel target of MAP kinases in activated T lymphocytes. European Journal of Immunology, 2004, 34, 587-597.	2.9	19
80	Commentary Vav-1 and T cells. European Journal of Immunology, 2003, 33, 1070-1072.	2.9	5
81	GTPases and T cell activation. Immunological Reviews, 2003, 192, 122-130.	6.0	149
82	Regulation and function of serine kinase networks in lymphocytes. Current Opinion in Immunology, 2003, 15, 294-298.	5.5	20
83	Intracellular Location and Cell Context-Dependent Function of Protein Kinase D. Immunity, 2003, 19, 491-501.	14.3	89
84	Approaches to Define Antigen Receptor-induced Serine Kinase Signal Transduction Pathways. Journal of Biological Chemistry, 2003, 278, 9267-9275.	3.4	38
85	A New Role for the p85-Phosphatidylinositol 3-Kinase Regulatory Subunit Linking FRAP to p70 S6 Kinase Activation. Journal of Biological Chemistry, 2002, 277, 1500-1508.	3.4	41
86	Protein Kinase D Is a Downstream Target of Protein Kinase CÎ, Biochemical and Biophysical Research Communications, 2002, 291, 444-452.	2.1	65
87	Protein kinase B (Akt) regulation and function in T lymphocytes. Seminars in Immunology, 2002, 14, 19-26.	5.6	115
88	Evidence That SHIP-1 Contributes to Phosphatidylinositol 3,4,5-Trisphosphate Metabolism in T Lymphocytes and Can Regulate Novel Phosphoinositide 3-Kinase Effectors. Journal of Immunology, 2002, 169, 5441-5450.	0.8	107
89	Regulation of an Activated S6 Kinase 1 Variant Reveals a Novel Mammalian Target of Rapamycin Phosphorylation Site. Journal of Biological Chemistry, 2002, 277, 20104-20112.	3.4	160
90	T-cell antigen receptor signal transduction. Immunology, 2002, 105, 369-374.	4.4	79

#	Article	IF	CITATIONS
91	Rap1A positively regulates T cells via integrin activation rather than inhibiting lymphocyte signaling. Nature Immunology, 2002, 3, 251-258.	14.5	261
92	Sustained and dynamic inositol lipid metabolism inside and outside the immunological synapse. Nature Immunology, 2002, 3, 1082-1089.	14.5	195
93	Transgenic analysis of thymocyte signal transduction. Nature Reviews Immunology, 2002, 2, 20-27.	22.7	48
94	The GTPase Rac-1 Controls Cell Fate in the Thymus by Diverting Thymocytes from Positive to Negative Selection. Immunity, 2001, 15, 703-713.	14.3	52
95	Phosphoinositide 3-kinases in T lymphocyte activation. Current Opinion in Immunology, 2001, 13, 332-338.	5.5	92
96	Analysis of Thymocyte Development Reveals That the Gtpase Rhoa Is a Positive Regulator of T Cell Receptor Responses in Vivo. Journal of Experimental Medicine, 2001, 194, 903-914.	8.5	74
97	Rapid Protein Kinase D Translocation in Response to G Protein-coupled Receptor Activation. Journal of Biological Chemistry, 2001, 276, 32616-32626.	3.4	92
98	Activation Loop Ser744 and Ser748 in Protein Kinase D Are Transphosphorylated in Vivo. Journal of Biological Chemistry, 2001, 276, 32606-32615.	3.4	142
99	IL-12 selectively regulates STAT4 via phosphatidylinositol 3-kinase and Ras-independent signal transduction pathways. European Journal of Immunology, 2000, 30, 1425-1434.	2.9	24
100	Ras regulation and function in lymphocytes. Current Opinion in Immunology, 2000, 12, 289-294.	5.5	158
101	Control of pre-T cell proliferation and differentiation by the GTPase Rac-1. Nature Immunology, 2000, 1, 348-352.	14.5	83
102	The Gtpase Rho Controls a P53-Dependent Survival Checkpoint during Thymopoiesis. Journal of Experimental Medicine, 2000, 192, 77-86.	8.5	59
103	Protein Kinase D. Journal of Experimental Medicine, 2000, 191, 2075-2082.	8.5	103
104	The T cell antigen receptor activates phosphatidylinositol 3-kinase-regulated serine kinases protein kinase B and ribosomal S6 kinase 1. FEBS Letters, 2000, 486, 38-42.	2.8	35
105	T Cell Activation and the Cytoskeleton. Annual Review of Immunology, 2000, 18, 165-184.	21.8	244
106	Characterization of Serine 916 as an in Vivo Autophosphorylation Site for Protein Kinase D/Protein Kinase Cμ. Journal of Biological Chemistry, 1999, 274, 26543-26549.	3.4	201
107	The Dynamics of Protein Kinase B Regulation during B Cell Antigen Receptor Engagement. Journal of Cell Biology, 1999, 145, 1511-1520.	5.2	121
108	Inhibition of Rho at different stages of thymocyte development gives different perspectives on Rho function. Current Biology, 1999, 9, 657-S1.	3.9	38

#	Article	IF	CITATIONS
109	Dynamic re-distribution of protein kinase D (PKD) as revealed by a GFP-PKD fusion protein: dissociation from PKD activation. FEBS Letters, 1999, 457, 515-521.	2.8	66
110	p70 ^{s6k} Integrates Phosphatidylinositol 3-Kinase and Rapamycin-Regulated Signals for E2F Regulation in T Lymphocytes. Molecular and Cellular Biology, 1999, 19, 4729-4738.	2.3	131
111	Protection of CD95-mediated apoptosis by activation of phosphatidylinositide 3-kinase and protein kinase B. European Journal of Immunology, 1998, 28, 57-69.	2.9	103
112	Involvement of phosphoinositide 3-kinase and Rac in membrane ruffling induced by IL-2 in T cells. European Journal of Immunology, 1998, 28, 1877-1885.	2.9	52
113	GTPases in antigen receptor signalling. Current Opinion in Immunology, 1998, 10, 322-329.	5.5	74
114	Networking Rho Family GTPases in Lymphocytes. Immunity, 1998, 8, 395-401.	14.3	80
115	Rac-1 Regulates Nuclear Factor of Activated T Cells (NFAT) C1 Nuclear Translocation in Response to Fcε Receptor Type 1 Stimulation of Mast Cells. Journal of Experimental Medicine, 1998, 188, 527-537.	8.5	47
116	p56lck Signals for Regulating Thymocyte Development Can Be Distinguished by Their Dependency on Rho Function. Journal of Experimental Medicine, 1998, 188, 931-939.	8.5	34
117	Involvement of phosphoinositide 3-kinase and Rac in membrane ruffling induced by IL-2 in T cells. European Journal of Immunology, 1998, 28, 1877-1885.	2.9	3
118	Phosphatidylinositol 3-Kinase Links the Interleukin-2 Receptor to Protein Kinase B and p70 S6 Kinase. Journal of Biological Chemistry, 1997, 272, 14426-14433.	3.4	161
119	STAT3 Is a Serine Kinase Target in T Lymphocytes. Journal of Biological Chemistry, 1997, 272, 24542-24549.	3.4	130
120	Phosphatidylinositol 3-Kinase Couples the Interleukin-2 Receptor to the Cell Cycle Regulator E2F. Immunity, 1997, 7, 679-689.	14.3	383
121	Different Functions of the GTPase Rho in Prothymocytes and Late Pre-T Cells. Immunity, 1997, 7, 163-174.	14.3	91
122	A negative role for phosphoinositide 3-kinase in T-cell antigen receptor function. Current Biology, 1997, 7, 285-293.	3.9	56
123	The GTPase Rho has a critical regulatory role in thymus development. EMBO Journal, 1997, 16, 2397-2407.	7.8	130
124	Phosphatidylinositol 3-kinase signals activate a selective subset of Rac/Rho-dependent effector pathways. Current Biology, 1996, 6, 1445-1455.	3.9	257
125	Protein kinase C is not a downstream effector of p21ras in activated T cells. European Journal of Immunology, 1995, 25, 42-47.	2.9	29
126	Analysis of the Role of Protein Kinase C-α, -ε, and -ζ in T Cell Activation. Journal of Biological Chemistry, 1995, 270, 9833-9839.	3.4	183

#	Article	lF	CITATIONS
127	Regulation of D-3 phosphoinositides during T cell activation via the T cell antigen receptor/CD3 complex and CD2 antigens. European Journal of Immunology, 1992, 22, 45-49.	2.9	100
128	Stimulation of p21ras upon T-cell activation. Nature, 1990, 346, 719-723.	27.8	907