
## Luis G Bermúdez-HumarÃ;n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1209052/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | <i>Faecalibacterium prausnitzii</i> is an anti-inflammatory commensal bacterium identified by gut<br>microbiota analysis of Crohn disease patients. Proceedings of the National Academy of Sciences of the<br>United States of America, 2008, 105, 16731-16736. | 7.1  | 3,581     |
| 2  | Faecalibacterium prausnitzii and human intestinal health. Current Opinion in Microbiology, 2013, 16, 255-261.                                                                                                                                                   | 5.1  | 829       |
| 3  | Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Molecular Medicine, 2011, 3, 559-572.                                                            | 6.9  | 694       |
| 4  | Identification of an anti-inflammatory protein from <i>Faecalibacterium prausnitzii</i> , a commensal bacterium deficient in Crohn's disease. Gut, 2016, 65, 415-425.                                                                                           | 12.1 | 585       |
| 5  | Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microbial Cell Factories, 2017, 16, 79.                                                                                      | 4.0  | 581       |
| 6  | Functional Characterization of Novel Faecalibacterium prausnitzii Strains Isolated from Healthy<br>Volunteers: A Step Forward in the Use of F. prausnitzii as a Next-Generation Probiotic. Frontiers in<br>Microbiology, 2017, 8, 1226.                         | 3.5  | 320       |
| 7  | <i>Lactococcus lactis,</i> an Efficient Cell Factory for Recombinant Protein Production<br>and Secretion. Journal of Molecular Microbiology and Biotechnology, 2008, 14, 48-58.                                                                                 | 1.0  | 214       |
| 8  | Faecalibacterium prausnitzii prevents physiological damages in a chronic low-grade inflammation murine model. BMC Microbiology, 2015, 15, 67.                                                                                                                   | 3.3  | 208       |
| 9  | Identification of Metabolic Signatures Linked to Anti-Inflammatory Effects of Faecalibacterium prausnitzii. MBio, 2015, 6, .                                                                                                                                    | 4.1  | 206       |
| 10 | The Commensal Bacterium Faecalibacterium prausnitzii Is Protective in DNBS-induced Chronic<br>Moderate and Severe Colitis Models. Inflammatory Bowel Diseases, 2014, 20, 417-430.                                                                               | 1.9  | 204       |
| 11 | Food-Grade Bacteria Expressing Elafin Protect Against Inflammation and Restore Colon Homeostasis.<br>Science Translational Medicine, 2012, 4, 158ra144.                                                                                                         | 12.4 | 198       |
| 12 | Role of commensal and probiotic bacteria in human health: a focus on inflammatory bowel disease.<br>Microbial Cell Factories, 2013, 12, 71.                                                                                                                     | 4.0  | 188       |
| 13 | A Novel Mucosal Vaccine Based on Live Lactococci Expressing E7 Antigen and IL-12 Induces Systemic and Mucosal Immune Responses and Protects Mice against Human Papillomavirus Type 16-Induced Tumors. Journal of Immunology, 2005, 175, 7297-7302.              | 0.8  | 183       |
| 14 | Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines.<br>Microbial Cell Factories, 2011, 10, S4.                                                                                                                   | 4.0  | 180       |
| 15 | Protein secretion in Lactococcus lactis : an efficient way to increase the overall heterologous protein production. Microbial Cell Factories, 2005, 4, 2.                                                                                                       | 4.0  | 178       |
| 16 | Probiotic Strain Lactobacillus casei BL23 Prevents Colitis-Associated Colorectal Cancer. Frontiers in<br>Immunology, 2017, 8, 1553.                                                                                                                             | 4.8  | 156       |
| 17 | Engineering lactococci and lactobacilli for human health. Current Opinion in Microbiology, 2013, 16, 278-283.                                                                                                                                                   | 5.1  | 148       |
| 18 | <i>Lactobacillus rhamnosus</i> CNCM I-3690 and the commensal bacterium <i>Faecalibacterium<br/>prausnitzii</i> A2-165 exhibit similar protective effects to induced barrier hyper-permeability in mice.<br>Gut Microbes, 2015, 6, 1-9.                          | 9.8  | 143       |

| #  | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Use of superoxide dismutase and catalase producing lactic acid bacteria in TNBS induced Crohn's disease in mice. Journal of Biotechnology, 2011, 151, 287-293.                                                                                                    | 3.8 | 141       |
| 20 | An inducible surface presentation system improves cellular immunity against human papillomavirus<br>type 16 E7 antigen in mice after nasal administration with recombinant lactococci. Journal of Medical<br>Microbiology, 2004, 53, 427-433.                     | 1.8 | 135       |
| 21 | Ecology and metabolism of the beneficial intestinal commensal bacterium <i>Faecalibacterium prausnitzii</i> . Gut Microbes, 2014, 5, 146-151.                                                                                                                     | 9.8 | 128       |
| 22 | Intranasal Immunization with Recombinant <i>Lactococcus lactis</i> Secreting Murine Interleukin-12<br>Enhances Antigen-Specific Th1 Cytokine Production. Infection and Immunity, 2003, 71, 1887-1896.                                                             | 2.2 | 119       |
| 23 | Intragastric administration of a superoxide dismutase-producing recombinant Lactobacillus casei BL23 strain attenuates DSS colitis in mice. International Journal of Food Microbiology, 2010, 144, 35-41.                                                         | 4.7 | 117       |
| 24 | Production of Human Papillomavirus Type 16 E7 Protein in <i>Lactococcus lactis</i> . Applied and Environmental Microbiology, 2002, 68, 917-922.                                                                                                                   | 3.1 | 116       |
| 25 | Anti-inflammatory effects of Lactobacillus casei BL23 producing or not a manganese-dependant catalase on DSS-induced colitis in mice. Microbial Cell Factories, 2007, 6, 22.                                                                                      | 4.0 | 109       |
| 26 | Serine protease inhibitors protect better than IL-10 and TGF-β anti-inflammatory cytokines against mouse colitis when delivered by recombinant lactococci. Microbial Cell Factories, 2015, 14, 26.                                                                | 4.0 | 103       |
| 27 | From Probiotics to Psychobiotics: Live Beneficial Bacteria Which Act on the Brain-Gut Axis. Nutrients, 2019, 11, 890.                                                                                                                                             | 4.1 | 99        |
| 28 | The potential probiotic Lactobacillus rhamnosus CNCM I-3690 strain protects the intestinal barrier by stimulating both mucus production and cytoprotective response. Scientific Reports, 2019, 9, 5398.                                                           | 3.3 | 98        |
| 29 | Development of a Stress-Inducible Controlled Expression (SICE) system in Lactococcus lactis for the production and delivery of therapeutic molecules at mucosal surfaces. Journal of Biotechnology, 2013, 168, 120-129.                                           | 3.8 | 93        |
| 30 | Identification of One Novel Candidate Probiotic Lactobacillus plantarum Strain Active against<br>Influenza Virus Infection in Mice by a Large-Scale Screening. Applied and Environmental Microbiology,<br>2013, 79, 1491-1499.                                    | 3.1 | 92        |
| 31 | Increased gut permeability in cancer cachexia: mechanisms and clinical relevance. Oncotarget, 2018, 9, 18224-18238.                                                                                                                                               | 1.8 | 90        |
| 32 | Butyrate mediates anti-inflammatory effects of <i>Faecalibacterium prausnitzii</i> in intestinal epithelial cells through <i>Dact3</i> . Gut Microbes, 2020, 12, 1826748.                                                                                         | 9.8 | 90        |
| 33 | Controlled Production of Stable Heterologous Proteins in <i>Lactococcus lactis</i> . Applied and Environmental Microbiology, 2002, 68, 3141-3146.                                                                                                                 | 3.1 | 89        |
| 34 | <scp>N</scp> uclease <scp>A</scp> ( <scp>Gbs</scp> 0661), an extracellular nuclease of<br><i><scp>S</scp>treptococcus agalactiae</i> , attacks the neutrophil extracellular traps and is needed<br>for full virulence. Molecular Microbiology, 2013, 89, 518-531. | 2.5 | 89        |
| 35 | The role of metagenomics in understanding the human microbiome in health and disease. Virulence, 2014, 5, 413-423.                                                                                                                                                | 4.4 | 87        |
| 36 | Genetically Engineered Immunomodulatory Streptococcus thermophilus Strains Producing<br>Antioxidant Enzymes Exhibit Enhanced Anti-Inflammatory Activities. Applied and Environmental<br>Microbiology, 2014, 80, 869-877.                                          | 3.1 | 85        |

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Searching for the Bacterial Effector: The Example of the Multi-Skilled Commensal Bacterium<br>Faecalibacterium prausnitzii. Frontiers in Microbiology, 2018, 9, 346.                                                                      | 3.5 | 84        |
| 38 | <i>Lactococcus lactis</i> as a live vector for mucosal delivery of therapeutic proteins. Hum Vaccin, 2009, 5, 264-267.                                                                                                                    | 2.4 | 81        |
| 39 | Drying process strongly affects probiotics viability and functionalities. Journal of Biotechnology, 2015, 214, 17-26.                                                                                                                     | 3.8 | 80        |
| 40 | Influence of the route of immunization and the nature of the bacterial vector on immunogenicity of mucosal vaccines based on lactic acid bacteria. Vaccine, 2007, 25, 6581-6588.                                                          | 3.8 | 79        |
| 41 | Cell-surface display of E7 antigen from human papillomavirus type-16 in <i>Lactococcus lactis</i> and<br>in <i>Lactobacillus plantarum</i> using a new cell-wall anchor from lactobacilli. Journal of Drug<br>Targeting, 2005, 13, 89-98. | 4.4 | 78        |
| 42 | Mice immunization with live lactococci displaying a surface anchored HPV-16 E7 oncoprotein. FEMS<br>Microbiology Letters, 2003, 229, 37-42.                                                                                               | 1.8 | 74        |
| 43 | Controlled intra- or extracellular production of staphylococcal nuclease and ovine omega interferon in <i>Lactococcus lactis</i> . FEMS Microbiology Letters, 2003, 224, 307-313.                                                         | 1.8 | 73        |
| 44 | Mucosal targeting of therapeutic molecules using genetically modified lactic acid bacteria: an update.<br>FEMS Microbiology Letters, 2013, 344, 1-9.                                                                                      | 1.8 | 73        |
| 45 | Anti-nociceptive effect of Faecalibacterium prausnitzii in non-inflammatory IBS-like models. Scientific<br>Reports, 2016, 6, 19399.                                                                                                       | 3.3 | 72        |
| 46 | New Insights into the Diversity of the Genus Faecalibacterium. Frontiers in Microbiology, 2017, 8, 1790.                                                                                                                                  | 3.5 | 71        |
| 47 | Use of Wild Type or Recombinant Lactic Acid Bacteria as an Alternative Treatment for Gastrointestinal<br>Inflammatory Diseases: A Focus on Inflammatory Bowel Diseases and Mucositis. Frontiers in<br>Microbiology, 2017, 8, 800.         | 3.5 | 69        |
| 48 | Anti-inflammatory properties of dairy lactobacilli. Inflammatory Bowel Diseases, 2012, 18, 657-666.                                                                                                                                       | 1.9 | 68        |
| 49 | Effects in the use of a genetically engineered strain of <i>Lactococcus lactis</i> delivering in situ IL-10 as a therapy to treat low-grade colon inflammation. Human Vaccines and Immunotherapeutics, 2014, 10, 1611-1621.               | 3.3 | 65        |
| 50 | Gnotobiotic Rodents: An In Vivo Model for the Study of Microbe–Microbe Interactions. Frontiers in<br>Microbiology, 2016, 7, 409.                                                                                                          | 3.5 | 57        |
| 51 | Anti-cancer effect of lactic acid bacteria expressing antioxidant enzymes or IL-10 in a colorectal cancer mouse model. International Immunopharmacology, 2017, 42, 122-129.                                                               | 3.8 | 57        |
| 52 | Novel Role of the Serine Protease Inhibitor Elafin in Gluten-Related Disorders. American Journal of<br>Gastroenterology, 2014, 109, 748-756.                                                                                              | 0.4 | 56        |
| 53 | Functional Analysis of the Lactobacillus casei BL23 Sortases. Applied and Environmental Microbiology, 2012, 78, 8684-8693.                                                                                                                | 3.1 | 55        |
| 54 | Current Review of Genetically Modified Lactic Acid Bacteria for the Prevention and Treatment of Colitis Using Murine Models. Gastroenterology Research and Practice, 2015, 2015, 1-8.                                                     | 1.5 | 55        |

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Identification of novel anti-inflammatory probiotic strains isolated from pulque. Applied<br>Microbiology and Biotechnology, 2016, 100, 385-396.                                                                                    | 3.6 | 54        |
| 56 | Secretion of biologically active pancreatitis-associated protein I (PAP) by genetically modified dairy<br>Lactococcus lactis NZ9000 in the prevention of intestinal mucositis. Microbial Cell Factories, 2017, 16,<br>27.           | 4.0 | 51        |
| 57 | Protection against human papillomavirus type 16-induced tumors in mice using non-genetically<br>modified lactic acid bacteria displaying E7 antigen at its surface. Applied Microbiology and<br>Biotechnology, 2013, 97, 1231-1239. | 3.6 | 50        |
| 58 | Implications of the human microbiome in inflammatory bowel diseases. FEMS Microbiology Letters, 2013, 342, 10-17.                                                                                                                   | 1.8 | 50        |
| 59 | Bifidobacterium animalis ssp. lactis CNCM-12494 Restores Gut Barrier Permeability in Chronically<br>Low-Grade Inflamed Mice. Frontiers in Microbiology, 2016, 7, 608.                                                               | 3.5 | 50        |
| 60 | Bile-Salt-Hydrolases from the Probiotic Strain Lactobacillus johnsonii La1 Mediate Anti-giardial<br>Activity in Vitro and in Vivo. Frontiers in Microbiology, 2017, 8, 2707.                                                        | 3.5 | 48        |
| 61 | Modulation of the PI3K/Akt/mTOR signaling pathway by probiotics as a fruitful target for orchestrating the immune response. Gut Microbes, 2021, 13, 1-17.                                                                           | 9.8 | 48        |
| 62 | Functional Foods, Nutraceuticals and Probiotics: A Focus on Human Health. Microorganisms, 2022, 10, 1065.                                                                                                                           | 3.6 | 48        |
| 63 | Construction and characterization of a Lactococcus lactis strain deficient in intracellular ClpP and extracellular HtrA proteases. Microbiology (United Kingdom), 2006, 152, 2611-2618.                                             | 1.8 | 44        |
| 64 | Intranasal Coadministration of Live Lactococci Producing Interleukin-12 and a Major Cow's Milk Allergen Inhibits Allergic Reaction in Mice. Vaccine Journal, 2007, 14, 226-233.                                                     | 3.1 | 43        |
| 65 | Immunomodulatory effects of IL-12 secreted by Lactococcus lactis on Th1/Th2 balance in ovalbumin (OVA)-induced asthma model mice. International Immunopharmacology, 2006, 6, 610-615.                                               | 3.8 | 38        |
| 66 | Bile Salt Hydrolase Activities: A Novel Target to Screen Anti-Giardia Lactobacilli?. Frontiers in<br>Microbiology, 2018, 9, 89.                                                                                                     | 3.5 | 38        |
| 67 | Fusion to a Carrier Protein and a Synthetic Propeptide Enhances E7 HPV-16 Production and Secretion in Lactococcus lactis. Biotechnology Progress, 2003, 19, 1101-1104.                                                              | 2.6 | 35        |
| 68 | Protective Effects of Lactococci Strains Delivering Either IL-10 Protein or cDNA in a TNBS-induced Chronic Colitis Model. Journal of Clinical Gastroenterology, 2014, 48, S12-S17.                                                  | 2.2 | 35        |
| 69 | Elucidating the Immune-Related Mechanisms by Which Probiotic Strain Lactobacillus casei BL23<br>Displays Anti-tumoral Properties. Frontiers in Microbiology, 2018, 9, 3281.                                                         | 3.5 | 34        |
| 70 | Role of Gut Microbiota and Probiotics in Colorectal Cancer: Onset and Progression. Microorganisms, 2021, 9, 1021.                                                                                                                   | 3.6 | 34        |
| 71 | Effects of Intranasal Administration of a Leptin-Secreting Lactococcus lactis Recombinant on Food<br>Intake, Body Weight, and Immune Response of Mice. Applied and Environmental Microbiology, 2007, 73,<br>5300-5307.              | 3.1 | 33        |
| 72 | Gut ecosystem: how microbes help us. Beneficial Microbes, 2014, 5, 219-233.                                                                                                                                                         | 2.4 | 32        |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A large scale inÂvitro screening of Streptococcus thermophilus strains revealed strains with a high anti-inflammatory potential. LWT - Food Science and Technology, 2016, 70, 78-87.                                                  | 5.2 | 30        |
| 74 | A Versatile New Model of Chemically Induced Chronic Colitis Using an Outbred Murine Strain.<br>Frontiers in Microbiology, 2018, 9, 565.                                                                                               | 3.5 | 30        |
| 75 | Probiotic-Based Vaccines May Provide Effective Protection against COVID-19 Acute Respiratory Disease.<br>Vaccines, 2021, 9, 466.                                                                                                      | 4.4 | 30        |
| 76 | Allergy Therapy by Intranasal Administration with Recombinant <i>Lactococcus lactis</i> Producing Bovine β-Lactoglobulin. International Archives of Allergy and Immunology, 2009, 150, 25-31.                                         | 2.1 | 29        |
| 77 | A new lactobacilli <i>in vivo</i> expression system for the production and delivery of heterologous proteins at mucosal surfaces. FEMS Microbiology Letters, 2016, 363, fnw117.                                                       | 1.8 | 28        |
| 78 | Anti-tumoral Effects of Recombinant Lactococcus lactis Strain Secreting IL-17A Cytokine. Frontiers in<br>Microbiology, 2018, 9, 3355.                                                                                                 | 3.5 | 28        |
| 79 | Milk Fermented with a 15-Lipoxygenase-1-Producing Lactococcus Lactis Alleviates Symptoms of colitis in a Murine Model. Current Pharmaceutical Biotechnology, 2015, 16, 424-429.                                                       | 1.6 | 28        |
| 80 | Production of biological active murine IFN-γ by recombinant Lactococcus lactis. FEMS Microbiology<br>Letters, 2008, 280, 144-149.                                                                                                     | 1.8 | 27        |
| 81 | Phosphatidylglycerols are induced by gut dysbiosis and inflammation, and favorably modulate adipose tissue remodeling in obesity. FASEB Journal, 2019, 33, 4741-4754.                                                                 | 0.5 | 27        |
| 82 | Twenty years of research on HPV vaccines based on genetically modified lactic acid bacteria: an overview on the gut-vagina axis. Cellular and Molecular Life Sciences, 2021, 78, 1191-1206.                                           | 5.4 | 27        |
| 83 | Heterologous expression of Brucella abortus GroEL heat-shock protein in Lactococcus lactis.<br>Microbial Cell Factories, 2006, 5, 14.                                                                                                 | 4.0 | 26        |
| 84 | Gut Microbiota Abrogates Anti-α-Gal IgA Response in Lungs and Protects against Experimental<br>Aspergillus Infection in Poultry. Vaccines, 2020, 8, 285.                                                                              | 4.4 | 26        |
| 85 | Expression of fibronectin binding protein A (FnBPA) from Staphylococcus aureus at the cell surface of Lactococcus lactis improves its immunomodulatory properties when used as protein delivery vector. Vaccine, 2016, 34, 1312-1318. | 3.8 | 24        |
| 86 | Mucosal co-immunization of mice with recombinant lactococci secreting VapA antigen and leptin elicits a protective immune response against Rhodococcus equi infection. Vaccine, 2011, 30, 95-102.                                     | 3.8 | 23        |
| 87 | A New Bifidobacteria Expression SysTem (BEST) to Produce and Deliver Interleukin-10 in<br>Bifidobacterium bifidum. Frontiers in Microbiology, 2018, 9, 3075.                                                                          | 3.5 | 23        |
| 88 | Molecular sexing of monomorphic endangeredArabirds. The Journal of Experimental Zoology, 2002, 292, 677-680.                                                                                                                          | 1.4 | 22        |
| 89 | Evaluation of the Probiotic Properties and the Capacity to Form Biofilms of Various Lactobacillus<br>Strains. Microorganisms, 2020, 8, 1053.                                                                                          | 3.6 | 21        |
| 90 | Heterologous production of human papillomavirus type-16 L1 protein by a lactic acid bacterium. BMC<br>Research Notes, 2009, 2, 167.                                                                                                   | 1.4 | 19        |

6

| #   | Article                                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Protective effect of TSLP delivered at the gut mucosa level by recombinant lactic acid bacteria in DSS-induced colitis mouse model. Microbial Cell Factories, 2015, 14, 176.                                                                                                   | 4.0  | 19        |
| 92  | Live bacterial biotherapeutics in the clinic. Nature Biotechnology, 2018, 36, 816-818.                                                                                                                                                                                         | 17.5 | 17        |
| 93  | Bioactive Compounds in Food as a Current Therapeutic Approach to Maintain a Healthy Intestinal<br>Epithelium. Microorganisms, 2021, 9, 1634.                                                                                                                                   | 3.6  | 17        |
| 94  | Probiotics and Trained Immunity. Biomolecules, 2021, 11, 1402.                                                                                                                                                                                                                 | 4.0  | 17        |
| 95  | Evaluation of the biosafety of recombinant lactic acid bacteria designed to prevent and treat colitis.<br>Journal of Medical Microbiology, 2016, 65, 1038-1046.                                                                                                                | 1.8  | 17        |
| 96  | Improvement of bovine ß-lactoglobulin production and secretion by Lactococcus lactis. Brazilian<br>Journal of Medical and Biological Research, 2005, 38, 353-359.                                                                                                              | 1.5  | 16        |
| 97  | Production of biologically active CXC chemokines by Lactococcus lactis: Evaluation of its potential as a novel mucosal vaccine adjuvant. Vaccine, 2008, 26, 5778-5783.                                                                                                         | 3.8  | 16        |
| 98  | Probiotic Properties of Lactobacillus Strains Isolated from Table Olive Biofilms. Probiotics and Antimicrobial Proteins, 2020, 12, 1071-1082.                                                                                                                                  | 3.9  | 16        |
| 99  | Perspectives for the development of human papillomavirus vaccines and immunotherapy. Expert<br>Review of Vaccines, 2010, 9, 35-44.                                                                                                                                             | 4.4  | 15        |
| 100 | Effect of iron on the probiotic properties of the vaginal isolate Lactobacillus jensenii CECT 4306.<br>Microbiology (United Kingdom), 2015, 161, 708-718.                                                                                                                      | 1.8  | 15        |
| 101 | Oral delivery of pancreatitisâ€associated protein by <i>Lactococcus lactis</i> displays protective effects in dinitroâ€benzenesulfonicâ€acidâ€nduced colitis model and is able to modulate the composition of the microbiota. Environmental Microbiology, 2019, 21, 4020-4031. | 3.8  | 15        |
| 102 | Consumption of Camembert cheese stimulates commensal enterococci in healthy human intestinal microbiota. FEMS Microbiology Letters, 2007, 276, 189-192.                                                                                                                        | 1.8  | 14        |
| 103 | Protective Effects of a Heme Oxygenase-1-Secreting Lactococcus lactis on Mucosal Injury Induced by Hemorrhagic Shock in Rats. Journal of Surgical Research, 2009, 153, 39-45.                                                                                                  | 1.6  | 14        |
| 104 | Contribution of sortase SrtA2 to Lactobacillus casei BL23 inhibition of Staphylococcus aureus internalization into bovine mammary epithelial cells. PLoS ONE, 2017, 12, e0174060.                                                                                              | 2.5  | 14        |
| 105 | Targeting Melanoma Hypoxia with the Food-Grade Lactic Acid Bacterium Lactococcus Lactis. Cancers, 2020, 12, 438.                                                                                                                                                               | 3.7  | 13        |
| 106 | Antioxidant and Anti-Inflammatory Properties of Probiotic Candidate Strains Isolated during<br>Fermentation of Agave (Agave angustifolia Haw). Microorganisms, 2021, 9, 1063.                                                                                                  | 3.6  | 13        |
| 107 | The secreted l-arabinose isomerase displays anti-hyperglycemic effects in mice. Microbial Cell<br>Factories, 2015, 14, 204.                                                                                                                                                    | 4.0  | 12        |
| 108 | M cell–targeting strategy enhances systemic and mucosal immune responses induced by oral<br>administration of nuclease-producing L. lactis. Applied Microbiology and Biotechnology, 2018, 102,<br>10703-10711.                                                                 | 3.6  | 12        |

| #   | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Protective Effect of Glycomacropeptide on Food Allergy with Gastrointestinal Manifestations in a Rat<br>Model through Down-Regulation of Type 2 Immune Response. Nutrients, 2020, 12, 2942.                                         | 4.1 | 12        |
| 110 | Loss of Restriction Site Ddel, used for Avian Molecular Sexing, in Oreophasis derbianus. Reproduction in Domestic Animals, 2002, 37, 321-323.                                                                                       | 1.4 | 11        |
| 111 | Current Prophylactic and Therapeutic Uses of a Recombinant <i>Lactococcus lactis</i><br>Strain Secreting Biologically Active Interleukin-12. Journal of Molecular Microbiology and<br>Biotechnology, 2008, 14, 80-89.               | 1.0 | 11        |
| 112 | The Administration Matrix Modifies the Beneficial Properties of a Probiotic Mix of Bifidobacterium<br>animalis subsp. lactis BB-12 and Lactobacillus acidophilus LA-5. Probiotics and Antimicrobial Proteins,<br>2021, 13, 484-494. | 3.9 | 11        |
| 113 | Intragastric administration with recombinant Lactococcus lactis producing heme oxygenase-1 prevents lipopolysaccharide-induced endotoxemia in rats. FEMS Microbiology Letters, 2008, 283, 62-68.                                    | 1.8 | 10        |
| 114 | Anti-inflammatory Properties of Lactic Acid Bacteria: Current Knowledge,Applications and Prospects.<br>Anti-Infective Agents in Medicinal Chemistry, 2008, 7, 148-154.                                                              | 0.6 | 10        |
| 115 | Age and Giardia intestinalis Infection Impact Canine Gut Microbiota. Microorganisms, 2021, 9, 1862.                                                                                                                                 | 3.6 | 10        |
| 116 | Identification of sulfur components enhancing the anti-Candida effect of Lactobacillus rhamnosus<br>Lcr35. Scientific Reports, 2020, 10, 17074.                                                                                     | 3.3 | 9         |
| 117 | Genome Sequence and Assessment of Safety and Potential Probiotic Traits of Lactobacillus johnsonii<br>CNCM I-4884. Microorganisms, 2022, 10, 273.                                                                                   | 3.6 | 8         |
| 118 | Functional characterization of α-Gal producing lactic acid bacteria with potential probiotic properties. Scientific Reports, 2022, 12, 7484.                                                                                        | 3.3 | 8         |
| 119 | Looking inside Mexican Traditional Food as Sources of Synbiotics for Developing Novel Functional Products. Fermentation, 2022, 8, 123.                                                                                              | 3.0 | 7         |
| 120 | Variations of N-acetylation level of peptidoglycan do not influence persistence of Lactococcus lactis<br>in the gastrointestinal tract. International Journal of Food Microbiology, 2010, 144, 29-34.                               | 4.7 | 6         |
| 121 | Importance of Commensal and Probiotic Bacteria in Human Health. Current Immunology Reviews, 2012,<br>8, 248-253.                                                                                                                    | 1.2 | 6         |
| 122 | The Dual Role of MAPK Pathway in the Regulation of Intestinal Barrier. Inflammatory Bowel Diseases, 2014, 20, E17-E18.                                                                                                              | 1.9 | 6         |
| 123 | Strategies for the Identification and Assessment of Bacterial Strains with Specific Probiotic Traits.<br>Microorganisms, 2022, 10, 1389.                                                                                            | 3.6 | 6         |
| 124 | Antimicrobial Activity of Divercin RV41 Produced and Secreted by <i>Lactococcus lactis</i> .<br>Journal of Molecular Microbiology and Biotechnology, 2007, 13, 259-263.                                                             | 1.0 | 5         |
| 125 | Intranasal administration with recombinant Lactococcus lactis expressing heme oxygenase-1 reduces hyperoxia-induced lung inflammation in rat pups. Biotechnology Letters, 2015, 37, 1203-1211.                                      | 2.2 | 5         |
| 126 | Assessment of the Safety and Efficacy of an Oral Probiotic-Based Vaccine Against Aspergillus Infection<br>in Captive-Bred Humboldt Penguins (Spheniscus humboldti). Frontiers in Immunology, 2022, 13, .                            | 4.8 | 5         |

| #   | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Inactivation of the <i>ybdD</i> Gene in Lactococcus lactis Increases the Amounts of Exported Proteins. Applied and Environmental Microbiology, 2012, 78, 7148-7151.                                                        | 3.1 | 4         |
| 128 | Use of Traditional and Genetically Modified Probiotics in Human Health: What Does the Future Hold?.<br>Microbiology Spectrum, 2017, 5, .                                                                                   | 3.0 | 4         |
| 129 | Sa2061 Protective and Curative Effect of Faecalibacterium prausnitzii in a Chronic DNBS-Induced<br>Murine Colitis. Gastroenterology, 2012, 142, S-392.                                                                     | 1.3 | 3         |
| 130 | Probiotics against Viral Infections: Current Clinical Trials and Future Perspectives. Immuno, 2021, 1, 468-498.                                                                                                            | 1.5 | 3         |
| 131 | Development of Mucosal Vaccines Based on Lactic Acid Bacteria. , 2009, , 1099-1122.                                                                                                                                        |     | 2         |
| 132 | Effects of a Modern Kefir on Conditions Associated with Moderate Severe Spastic Quadriparesis<br>Cerebral Palsy. Microorganisms, 2022, 10, 1291.                                                                           | 3.6 | 2         |
| 133 | Sa2060 Gnotobiotic Mice, a Promising Tool to Better Understand the Anti-Inflammatory Effects of Faecalibacterium prausnitziÃ <sup>-</sup> ?. Gastroenterology, 2012, 142, S-392.                                           | 1.3 | 1         |
| 134 | Tu1988 Impact of the Commensal Bacterium Faecalibacterium prausnitzii in a Non Active Inflammation<br>Murine Model. Gastroenterology, 2013, 144, S-897-S-898.                                                              | 1.3 | 1         |
| 135 | Probiotics as Anti-Giardia Defenders: Overview on Putative Control Mechanisms. , 2020, , 335-349.                                                                                                                          |     | 1         |
| 136 | Mo1855 Oral Treatment With Elafin-Recombinant Probiotics Improves Visceral Pain and<br>Hypersensitivity in a Model of Irritable Bowel Syndrome (IBS). Gastroenterology, 2012, 142, S-700-S-701.                            | 1.3 | 0         |
| 137 | Mo2015 Food-Grade Lactic Acid Bacteria Expressing Elastase Inhibitors Protect From Intestinal<br>Inflammation in Acute and Chronic Models of Colitis in Mice. Gastroenterology, 2012, 142, S-720.                          | 1.3 | 0         |
| 138 | Tu1842 Elastolytic Balance in IBD: the Elastase Inhibitor Elafin Prevents Loss of Barrier Function and<br>Cytokines Release by Human Intestinal Epithelial Cells in IBD Conditions. Gastroenterology, 2012, 142,<br>S-859. | 1.3 | 0         |
| 139 | Tu1778 Faecalibacterium prausnitzii Prevents Irritable Bowel Syndrome-Like Symptoms in Both Murine<br>Low Grade Chronic Inflammation and Acute Stress Models. Gastroenterology, 2014, 146, S-840-S-841.                    | 1.3 | 0         |
| 140 | Tu1746 Faecalibacterium prausnitzii Provides Host Beneficial Metabolic Profile During Inflammation.<br>Gastroenterology, 2014, 146, S-832.                                                                                 | 1.3 | 0         |
| 141 | 83 Identification of an Anti-Inflammatory Protein From Faecalibacterium prausnitzii, a Deficient<br>Commensal Bacteria Implicated in Crohn's Disease. Gastroenterology, 2014, 146, S-23.                                   | 1.3 | 0         |
| 142 | Use of Traditional and Genetically Modified Probiotics in Human Health: What Does the Future Hold?. , 2018, , 363-370.                                                                                                     |     | 0         |
| 143 | The Indigenous Microbiota and its Potential to Exhibit Probiotic Properties. , 2015, , 181-194.                                                                                                                            |     | Ο         |