Abdel-Aziz El Mel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12090474/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of the substrate temperature during gold-copper alloys thin film deposition by magnetron co-sputtering on the dealloying process. Surface and Coatings Technology, 2020, 383, 125220.	4.8	10
2	Oxidation of Au/Ag films by oxygen plasma: phase separation and generation of nanoporosity. Beilstein Journal of Nanotechnology, 2020, 11, 1608-1614.	2.8	2
3	Co-sputtering of gold and copper onto liquids: a route towards the production of porous gold nanoparticles. Nanotechnology, 2020, 31, 455303.	2.6	11
4	Study of the Coarsening of Nanoporous Gold Nanowires by In Situ Scanning Transmission Electron Microscopy During Annealing. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900376.	2.4	6
5	Patterning of silver on the micro- and nano-scale by local oxidation using air plasma. Nano Structures Nano Objects, 2019, 19, 100320.	3.5	4
6	Vapor dealloying of ultra-thin films: a promising concept for the fabrication of highly flexible transparent conductive metal nanomesh electrodes. Npj Flexible Electronics, 2019, 3, .	10.7	16
7	Polarization-dependent ultrafast plasmon relaxation dynamics in nanoporous gold thin films and nanowires. Journal Physics D: Applied Physics, 2019, 52, 225103.	2.8	5
8	Interface Engineering in CuInSe ₂ Solar Cells Using Ammonium Sulfide Vapors. Solar Rrl, 2017, 1, 1700067.	5.8	7
9	Kirkendall Effect vs Corrosion of Silver Nanocrystals by Atomic Oxygen: From Solid Metal Silver to Nanoporous Silver Oxide. Journal of Physical Chemistry C, 2017, 121, 19497-19504.	3.1	22
10	Effect of ammonium sulfide treatments on the surface properties of Cu2ZnSnSe4 thin films. Thin Solid Films, 2017, 633, 135-140.	1.8	7
11	Large-Scale Fabrication of Porous Gold Nanowires via Laser Interference Lithography and Dealloying of Gold–Silver Nano-Alloys. Micromachines, 2017, 8, 168.	2.9	18
12	Dealloying of gold–copper alloy nanowires: From hillocks to ring-shaped nanopores. Beilstein Journal of Nanotechnology, 2016, 7, 1361-1367.	2.8	7
13	Controlling the Formation of Nanocavities in Kirkendall Nanoobjects through Sequential Thermal Ex Situ Oxidation and In Situ Reduction Reactions. Small, 2016, 12, 2885-2892.	10.0	12
14	In situ conversion of nanostructures from solid to hollow in transmission electron microscopes using electron beam. Nanoscale, 2016, 8, 10876-10884.	5.6	18
15	Direct nanopatterning of polymer/silver nanoblocks under low energy electron beam irradiation. Nanoscale, 2016, 8, 17108-17112.	5.6	3
16	Impact of the morphology and composition on the dealloying process of coâ€sputtered silver–aluminum alloy thin films. Physica Status Solidi (B): Basic Research, 2016, 253, 2167-2174.	1.5	11
17	Galvanic Replacement Reaction: A Route to Highly Ordered Bimetallic Nanotubes. Journal of Physical Chemistry C, 2016, 120, 17652-17659.	3.1	52
18	Planar Arrays of Nanoporous Gold Nanowires: When Electrochemical Dealloying Meets Nanopatterning. ACS Applied Materials & Interfaces, 2016, 8, 6611-6620.	8.0	49

Abdel-Aziz El Mel

#	Article	IF	CITATIONS
19	Creating nanoporosity in silver nanocolumns by direct exposure to radio-frequency air plasma. Nanoscale, 2016, 8, 141-148.	5.6	34
20	The Kirkendall effect and nanoscience: hollow nanospheres and nanotubes. Beilstein Journal of Nanotechnology, 2015, 6, 1348-1361.	2.8	108
21	KCN Chemical Etch for Interface Engineering in Cu ₂ ZnSnSe ₄ Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 14690-14698.	8.0	62
22	Unusual Dealloying Effect in Gold/Copper Alloy Thin Films: The Role of Defects and Column Boundaries in the Formation of Nanoporous Gold. ACS Applied Materials & Interfaces, 2015, 7, 2310-2321.	8.0	70
23	The Kirkendall Effect in Binary Alloys: Trapping Gold in Copper Oxide Nanoshells. Chemistry of Materials, 2015, 27, 6374-6384.	6.7	21
24	Surface Cleaning and Passivation Using (NH ₄) ₂ S Treatment for Cu(In,Ga)Se ₂ Solar Cells: A Safe Alternative to KCN. Advanced Energy Materials, 2015, 5, 1401689.	19.5	36
25	Zn based nanoparticle–carbon nanotube hybrid materials: Interaction and charge transfer. Carbon, 2014, 66, 442-449.	10.3	6
26	Electron Beam Nanosculpting of Kirkendall Oxide Nanochannels. ACS Nano, 2014, 8, 1854-1861.	14.6	34
27	Hollow Nanostructures: Highly Ordered Hollow Oxide Nanostructures: The Kirkendall Effect at the Nanoscale (Small 17/2013). Small, 2013, 9, 2837-2837.	10.0	1
28	Highly Ordered Hollow Oxide Nanostructures: The Kirkendall Effect at the Nanoscale. Small, 2013, 9, 2838-2843.	10.0	66
29	Recombination stability in polycrystalline Cu <inf>2</inf> ZnSnSe <inf>4</inf> thin films. , 2013, , .		10