Klaus T Preissner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12089133/publications.pdf

Version: 2024-02-01

19657 16183 16,319 167 61 124 citations h-index g-index papers 171 171 171 17525 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Altered fibrin clot structure and dysregulated fibrinolysis contribute toÂthrombosis risk in severe COVID-19. Blood Advances, 2022, 6, 1074-1087.	5.2	35
2	Extracellular Ribosomal RNA Acts Synergistically with Toll-like Receptor 2 Agonists to Promote Inflammation. Cells, 2022, 11, 1440.	4.1	3
3	Platelet glycoprotein Vlâ€dependent thrombus stabilization is essential for the intraportal engraftment of pancreatic islets. American Journal of Transplantation, 2021, 21, 2079-2089.	4.7	O
4	Neutrophil extracellular traps promote fibrous vascular occlusions in chronic thrombosis. Blood, 2021, 137, 1104-1116.	1.4	71
5	Positioning of nucleosomes containing \hat{I}^3 -H2AX precedes active DNA demethylation and transcription initiation. Nature Communications, 2021, 12, 1072.	12.8	30
6	The Absence of Extracellular Cold-Inducible RNA-Binding Protein (eCIRP) Promotes Pro-Angiogenic Microenvironmental Conditions and Angiogenesis in Muscle Tissue Ischemia. International Journal of Molecular Sciences, 2021, 22, 9484.	4.1	6
7	More Is Not Always Betterâ€"the Double-Headed Role of Fibronectin in Staphylococcus aureus Host Cell Invasion. MBio, 2021, 12, e0106221.	4.1	13
8	Self-extracellular RNA promotes pro-inflammatory response of astrocytes to exogenous and endogenous danger signals. Journal of Neuroinflammation, 2021, 18, 252.	7.2	13
9	Extracellular RNA as a Versatile DAMP and Alarm Signal That Influences Leukocyte Recruitment in Inflammation and Infection. Frontiers in Cell and Developmental Biology, 2020, 8, 619221.	3.7	37
10	Thrombin Promotes Macrophage Polarization into M1-Like Phenotype to Induce Inflammatory Responses. Thrombosis and Haemostasis, 2020, 120, 658-670.	3.4	20
11	Shear Stress–Induced miR-143-3p in Collateral Arteries Contributes to Outward Vessel Growth by Targeting Collagen V-α2. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e126-e137.	2.4	14
12	Extracellular RNA in Central Nervous System Pathologies. Frontiers in Molecular Neuroscience, 2019, 12, 254.	2.9	24
13	Extracellular RNA released due to shear stress controls natural bypass growth by mediating mechanotransduction in mice. Blood, 2019, 134, 1469-1479.	1.4	28
14	Characterization of mast cellâ€derived rRNAâ€containing microvesicles and their inflammatory impact on endothelial cells. FASEB Journal, 2019, 33, 5457-5467.	0.5	17
15	Inactivation of nuclear histone deacetylases by EP300 disrupts the MiCEE complex in idiopathic pulmonary fibrosis. Nature Communications, 2019, 10, 2229.	12.8	53
16	Extracellular Matrix Interactions with Gram-Positive Pathogens. Microbiology Spectrum, 2019, 7, .	3.0	32
17	Optimizing Measurement of Vascular Endothelial Growth Factor in Small Blood Samples of Premature Infants. Scientific Reports, 2019, 9, 6744.	3.3	4
18	Inflammationâ€mediated deacetylation of the ribonuclease 1 promoter <i>via</i> histone deacetylase 2 in endothelial cells. FASEB Journal, 2019, 33, 9017-9029.	0.5	16

#	Article	IF	CITATIONS
19	Extracellular Matrix Interactions with Gram-Positive Pathogens. , 2019, , 108-124.		5
20	The Extraordinary Role of Extracellular RNA in Arteriogenesis, the Growth of Collateral Arteries. International Journal of Molecular Sciences, 2019, 20, 6177.	4.1	11
21	Innate immunity as a target for acute cardioprotection. Cardiovascular Research, 2019, 115, 1131-1142.	3.8	101
22	Circulating blood cells and extracellular vesicles in acute cardioprotection. Cardiovascular Research, 2019, 115, 1156-1166.	3.8	106
23	Influence of Medication-Induced Preconditioning or Remote Ischemic Preconditioning on the Intrinsic Vascular Extracellular RNA/Ribonuclease System in Cardioprotection. Thoracic and Cardiovascular Surgeon, 2019, 67, 494-501.	1.0	4
24	Protein arginine methyltransferase 5 mediates enolase-1 cell surface trafficking in human lung adenocarcinoma cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1816-1827.	3.8	30
25	Polysialic acid is released by human umbilical vein endothelial cells (HUVEC) in vitro. Cell and Bioscience, 2018, 8, 64.	4.8	12
26	The Role of Midkine in Arteriogenesis, Involving Mechanosensing, Endothelial Cell Proliferation, and Vasodilation. International Journal of Molecular Sciences, 2018, 19, 2559.	4.1	35
27	The Staphylococcus aureus Extracellular Adherence Protein Eap Is a DNA Binding Protein Capable of Blocking Neutrophil Extracellular Trap Formation. Frontiers in Cellular and Infection Microbiology, 2018, 8, 235.	3.9	40
28	Vitronectin., 2018,, 5930-5941.		0
29	Responses of Endothelial Cells Towards Ischemic Conditioning Following Acute Myocardial Infarction. Conditioning Medicine, 2018, 1, 247-258.	1.3	18
30	The extracellular adherence protein (Eap) of Staphylococcus aureus acts as a proliferation and migration repressing factor that alters the cell morphology of keratinocytes. International Journal of Medical Microbiology, 2017, 307, 116-125.	3.6	12
31	Targeting of Extracellular RNA Reduces Edema Formation and Infarct Size and Improves Survival After Myocardial Infarction in Mice. Journal of the American Heart Association, 2017, 6, .	3.7	27
32	A Set of Genetic Constructs for Binase and Barstar Overproduction. BioNanoScience, 2017, 7, 222-225.	3.5	0
33	Extracellular nucleic acids in immunity and cardiovascular responses: between alert and disease. Thrombosis and Haemostasis, 2017, 117, 1272-1282.	3.4	22
34	Antitumor Macrophage Response to Bacillus pumilus Ribonuclease (Binase). Mediators of Inflammation, 2017, 2017, 1-11.	3.0	7
35	Self-extracellular RNA acts in synergy with exogenous danger signals to promote inflammation. PLoS ONE, 2017, 12, e0190002.	2.5	29
36	The expression and localization of RNase and RNase inhibitor in blood cells and vascular endothelial cells in homeostasis of the vascular system. PLoS ONE, 2017, 12, e0174237.	2.5	10

3

#	Article	IF	Citations
37	Ribonuclease (RNase) Prolongs Survival of Grafts in Experimental Heart Transplantation. Journal of the American Heart Association, 2016, 5, .	3.7	19
38	Suppression of Neutrophil-Mediated Tissue Damageâ€"A Novel Skill of Mesenchymal Stem Cells. Stem Cells, 2016, 34, 2393-2406.	3.2	121
39	Host-derived extracellular RNA promotes adhesion of Streptococcus pneumoniae to endothelial and epithelial cells. Scientific Reports, 2016, 6, 37758.	3.3	27
40	Perivascular Mast Cells Govern Shear Stress-Induced Arteriogenesis by Orchestrating Leukocyte Function. Cell Reports, 2016, 16, 2197-2207.	6.4	55
41	Influence of Extracellular RNAs, Released by Rheumatoid Arthritis Synovial Fibroblasts, on Their Adhesive and Invasive Properties. Journal of Immunology, 2016, 197, 2589-2597.	0.8	25
42	Current concepts in chronic inflammatory diseases: Interactions between microbes, cellular metabolism, and inflammation. Journal of Allergy and Clinical Immunology, 2016, 138, 47-56.	2.9	35
43	From basic mechanisms to clinical applications in heart protection, new players in cardiovascular diseases and cardiac theranostics: meeting report from the third international symposium on "New frontiers in cardiovascular research†Basic Research in Cardiology, 2016, 111, 69.	5.9	41
44	A Jonah-like chymotrypsin from the therapeutic maggot Lucilia sericata plays a role in wound debridement and coagulation. Insect Biochemistry and Molecular Biology, 2016, 70, 138-147.	2.7	27
45	Extracellular Ribonucleic Acids (RNA) Enter the Stage in Cardiovascular Disease. Circulation Research, 2016, 118, 469-479.	4.5	59
46	Vitronectin., 2016,, 1-11.		0
47	Regulation of monocyte/macrophage polarisation by extracellular RNA. Thrombosis and Haemostasis, 2015, 113, 473-481.	3.4	36
48	Surfing on the Cardiovascular Frontier Wave. Thrombosis and Haemostasis, 2015, 113, 439-440.	3.4	4
49	RNase1 as a potential mediator of remote ischaemic preconditioning for cardioprotection. European Journal of Cardio-thoracic Surgery, 2015, 48, 732-737.	1.4	42
50	Coronary Neutrophil Extracellular Trap Burden and Deoxyribonuclease Activity in ST-Elevation Acute Coronary Syndrome Are Predictors of ST-Segment Resolution and Infarct Size. Circulation Research, 2015, 116, 1182-1192.	4.5	373
51	Arterial and Venous Thrombosis following Trauma and Major Orthopedic Surgery: Molecular Mechanisms and Strategies for Intervention. Seminars in Thrombosis and Hemostasis, 2015, 41, 141-145.	2.7	19
52	STIM1/ORAI1-mediated Ca2+ Influx Regulates Enolase-1 Exteriorization. Journal of Biological Chemistry, 2015, 290, 11983-11999.	3.4	34
53	Autoantibody-mediated cytotoxicity in paediatric opsoclonus–myoclonus syndrome is dependent on ERK-1/2 phophorylation. Journal of Neuroimmunology, 2015, 289, 182-186.	2.3	8
54	Response to Letter Regarding Article "Role of Extracellular RNA in Atherosclerotic Plaque Formation in Mice― Circulation, 2014, 130, e144-5.	1.6	12

#	Article	IF	CITATIONS
55	Defective Angiogenesis Delays Thrombus Resolution. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 810-819.	2.4	95
56	Role of Extracellular RNA in Atherosclerotic Plaque Formation in Mice. Circulation, 2014, 129, 598-606.	1.6	73
57	Association of neutrophil extracellular traps with endometriosis-related chronic inflammation. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2014, 183, 193-200.	1.1	35
58	RNase1 prevents the damaging interplay between extracellular RNA and tumour necrosis factor- \hat{l}_{\pm} in cardiac ischaemia/reperfusion injury. Thrombosis and Haemostasis, 2014, 112, 1110-1119.	3.4	79
59	Expression pattern of protease activated receptors in lymphoid cells. Cellular Immunology, 2014, 288, 47-52.	3.0	21
60	Influence of proinflammatory stimuli on the expression of vascular ribonuclease 1 in endothelial cells. FASEB Journal, 2014, 28, 752-760.	0.5	24
61	Human placenta-derived Wnt-5a induces the expression of ICAM-1 and VCAM-1 in CD133+CD34+-hematopoietic progenitor cells. Reproductive Biology, 2014, 14, 262-275.	1.9	8
62	Interaction of the Cell Adhesion Molecule CHL1 with Vitronectin, Integrins, and the Plasminogen Activator Inhibitor-2 Promotes CHL1-Induced Neurite Outgrowth and Neuronal Migration. Journal of Neuroscience, 2014, 34, 14606-14623.	3.6	45
63	Impact of extracellular RNA on endothelial barrier function. Cell and Tissue Research, 2014, 355, 635-645.	2.9	35
64	Characterization of rapid neutrophil extracellular trap formation and its cooperation with phagocytosis in human neutrophils. Discoveries, 2014, 2, e19.	2.3	18
65	Soluble polysialylated NCAM: a novel player of the innate immune system in the lung. Cellular and Molecular Life Sciences, 2013, 70, 3695-3708.	5.4	44
66	The Staphylococcus aureus Extracellular Adherence Protein Promotes Bacterial Internalization by Keratinocytes Independent of Fibronectin-Binding Proteins. Journal of Investigative Dermatology, 2013, 133, 2004-2012.	0.7	54
67	Fighting against the dark side of neutrophil extracellular traps in disease. Current Opinion in Hematology, 2013, 20, 3-9.	2.5	65
68	Extracellular RNA Liberates Tumor Necrosis Factor-α to Promote Tumor Cell Trafficking and Progression. Cancer Research, 2013, 73, 5080-5089.	0.9	47
69	The dimeric platelet collagen receptor GPVI-Fc reduces platelet adhesion to activated endothelium and preserves myocardial function after transient ischemia in mice. American Journal of Physiology - Cell Physiology, 2012, 303, C757-C766.	4.6	77
70	Disruption of Platelet-derived Chemokine Heteromers Prevents Neutrophil Extravasation in Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 628-636.	5 . 6	202
71	Extracellular RNA promotes leukocyte recruitment in the vascular system by mobilising proinflammatory cytokines. Thrombosis and Haemostasis, 2012, 108, 730-741.	3.4	54
72	Neutrophil Extracellular Traps Directly Induce Epithelial and Endothelial Cell Death: A Predominant Role of Histones. PLoS ONE, 2012, 7, e32366.	2.5	1,035

5

#	Article	IF	Citations
73	Structural Requirements for the Procoagulant Activity of Nucleic Acids. PLoS ONE, 2012, 7, e50399.	2.5	36
74	Adipose tissue-derived PAI-1: A molecular link for thrombo-inflammatory disease states?. Thrombosis and Haemostasis, 2012, 108, 415-415.	3.4	2
75	Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. Journal of Experimental Medicine, 2012, 209, 819-835.	8.5	1,441
76	Expression and localisation of vascular ribonucleases in endothelial cells. Thrombosis and Haemostasis, 2011, 105, 345-355.	3.4	48
77	Vitronectin in Vascular Context: Facets of a Multitalented Matricellular Protein. Seminars in Thrombosis and Hemostasis, 2011, 37, 408-424.	2.7	119
78	Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nature Medicine, 2010, 16, 887-896.	30.7	995
79	Cell Surface Tetraspanin Tspan8 Contributes to Molecular Pathways of Exosome-Induced Endothelial Cell Activation. Cancer Research, 2010, 70, 1668-1678.	0.9	582
80	Extracellular Adherence Protein of Staphylococcus aureus Suppresses Disease by Inhibiting T-Cell Recruitment in a Mouse Model of Psoriasis. Journal of Investigative Dermatology, 2010, 130, 743-754.	0.7	14
81	Signaling mechanism of extracellular RNA in endothelial cells. FASEB Journal, 2009, 23, 2100-2109.	0.5	54
82	Integrin-linked kinase is required for vitronectin-mediated internalization of <i>Streptococcus pneumoniae </i> by host cells. Journal of Cell Science, 2009, 122, 256-267.	2.0	124
83	RNase Therapy Assessed by Magnetic Resonance Imaging Reduces Cerebral Edema and Infarction Size in Acute Stroke. Current Neurovascular Research, 2009, 6, 12-19.	1.1	44
84	Plasminogen activator inhibitor type 1 inhibits smooth muscle cell proliferation in pulmonary arterial hypertension. International Journal of Biochemistry and Cell Biology, 2008, 40, 1872-1882.	2.8	33
85	Host-Derived Extracellular Nucleic Acids Enhance Innate Immune Responses, Induce Coagulation, and Prolong Survival upon Infection in Insects. Journal of Immunology, 2008, 181, 2705-2712.	0.8	135
86	Loss of RAGE in Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2008, 39, 337-345.	2.9	122
87	Intravascular and Extravascular Coagulation and Fibrinolysis in the Diseased Lung., 2008,, 37-47.		0
88	Current view on alveolar coagulation and fibrinolysis in acute inflammatory and chronic interstitial lung diseases. Thrombosis and Haemostasis, 2008, 99, 494-501.	3.4	83
89	From Molecules to Medicine: New Horizons in Vascular Biology and Thrombosis. Thrombosis and Haemostasis, 2008, 99, 251-252.	3.4	1
90	Plasminogen Activator Inhibitor-1 Is an Inhibitor of Factor VII-activating Protease in Patients with Acute Respiratory Distress Syndrome. Journal of Biological Chemistry, 2007, 282, 21671-21682.	3.4	42

#	Article	IF	Citations
91	The Role of Multifunctional Adhesion Molecules in Spermatogenesis and Sperm Function: Lessons from Hemostasis and Defense?. Seminars in Thrombosis and Hemostasis, 2007, 33, 100-110.	2.7	7
92	Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6388-6393.	7.1	482
93	The Neutrophil-specific Antigen CD177 Is a Counter-receptor for Platelet Endothelial Cell Adhesion Molecule-1 (CD31). Journal of Biological Chemistry, 2007, 282, 23603-23612.	3.4	205
94	Extracellular RNA mediates endothelial-cell permeability via vascular endothelial growth factor. Blood, 2007, 110, 2457-2465.	1.4	109
95	Inhibition of breast cancer cell adhesion and bone metastasis by the extracellular adherence protein of Staphylococcus aureus. Biochemical and Biophysical Research Communications, 2007, 357, 282-288.	2.1	13
96	The anti-inflammatory activities of Staphylococcus aureus. Trends in Immunology, 2007, 28, 408-418.	6.8	77
97	Urokinase Receptor (CD87) Clustering in Detergent-Insoluble Adhesion Patches Leads to Cell Adhesion Independently of Integrins. Cell Communication and Adhesion, 2007, 14, 137-155.	1.0	5
98	A positively charged cluster in the epidermal growth factor-like domain of Factor VII-activating protease (FSAP) is essential for polyanion binding. Biochemical Journal, 2006, 394, 687-692.	3.7	34
99	The extracellular adherence protein (Eap) of Staphylococcus aureus inhibits wound healing by interfering with host defense and repair mechanisms. Blood, 2006, 107, 2720-2727.	1.4	87
100	Angiopoietin-2 sensitizes endothelial cells to TNF- $\hat{l}\pm$ and has a crucial role in the induction of inflammation. Nature Medicine, 2006, 12, 235-239.	30.7	819
101	Suppression of experimental autoimmune encephalomyelitis by extracellular adherence protein of Staphylococcus aureus. Journal of Experimental Medicine, 2006, 203, 985-994.	8.5	45
102	The extracellular adherence protein from Staphylococcus aureusabrogates angiogenic responses of endothelial cells by blocking Ras activation. FASEB Journal, 2006, 20, 2621-2623.	0.5	25
103	Lipoprotein(a) in atherosclerotic plaques recruits inflammatory cells through interaction with Mac†integrin. FASEB Journal, 2006, 20, 559-561.	0.5	111
104	Angiostatin is a novel anti-inflammatory factor by inhibiting leukocyte recruitment. Blood, 2005, 105, 1036-1043.	1.4	74
105	Inhibition of pathologic retinal neovascularization by Â-defensins. Blood, 2005, 106, 3831-3838.	1.4	70
106	Extracellular RNA is a natural cofactor for the (auto-)activation of Factor VII-activating protease (FSAP). Biochemical Journal, 2005, 385, 831-838.	3.7	99
107	The role of junctional adhesion moleculeâ€C (JAMâ€C) in oxidized LDLâ€mediated leukocyte recruitment. FASEB Journal, 2005, 19, 2078-2080.	0.5	85
108	The functional role of blood platelet components in angiogenesis. Thrombosis and Haemostasis, 2004, 92, 394-402.	3.4	108

#	Article	IF	Citations
109	Expression of transcription factor Oct-4 and other embryonic genes in CD133 positive cells from human umbilical cord blood. Thrombosis and Haemostasis, 2004, 92, 767-775.	3.4	70
110	Oncodevelopmental \hat{l}_{\pm} -Fetoprotein Acts as a Selective Proangiogenic Factor on Endothelial Cell from the Fetomaternal Unit. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 1415-1422.	3.6	40
111	Regulation of neovascularization by human neutrophil peptides (αâ€defensins): a link between inflammation and angiogenesis. FASEB Journal, 2004, 18, 1306-1308.	0.5	125
112	Reciprocal regulation of urokinase receptor (CD87)-mediated cell adhesion by plasminogen activator inhibitor-1 and protease nexin-1. Journal of Cell Science, 2004, 117, 477-485.	2.0	27
113	Human Thy-1 (CD90) on Activated Endothelial Cells Is a Counterreceptor for the Leukocyte Integrin Mac-1 (CD11b/CD18). Journal of Immunology, 2004, 172, 3850-3859.	0.8	130
114	The Junctional Adhesion Molecule-C Promotes Neutrophil Transendothelial Migration in Vitro and in Vivo. Journal of Biological Chemistry, 2004, 279, 55602-55608.	3.4	160
115	Promotion of Leukocyte Adhesion by a Novel Interaction Between Vitronectin and the \hat{I}^2 2Integrin Mac-1 ($\hat{I}\pm M\hat{I}^2$ 2, CD11b/CD18). Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 2251-2256.	2.4	46
116	Variability in the expression of urokinase receptor (CD87) mutants on cells: relevance to cell adhesion. Cell Biochemistry and Function, 2004, 22, 257-264.	2.9	2
117	Regulation of neovascularization by human neutrophil peptides ($\hat{l}\pm$ -defensins): a link between inflammation and angiogenesis. , 2004, 18, 1306.		1
118	The Pattern Recognition Receptor (RAGE) Is a Counterreceptor for Leukocyte Integrins. Journal of Experimental Medicine, 2003, 198, 1507-1515.	8.5	542
119	Potential Role for ADAM15 in Pathological Neovascularization in Mice. Molecular and Cellular Biology, 2003, 23, 5614-5624.	2.3	170
120	High Molecular Weight Kininogen Regulates Platelet-Leukocyte Interactions by Bridging Mac-1 and Glycoprotein lb. Journal of Biological Chemistry, 2003, 278, 45375-45381.	3.4	55
121	Possible Angiogenic Roles of Insulin-Like Growth Factor II and Its Receptors in Uterine Vascular Adaptation to Pregnancy. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 4811-4817.	3.6	65
122	Potential Pharmacological Applications of the Antithrombotic Molecule High Molecular Weight Kininogen. Current Vascular Pharmacology, 2003, 1, 59-64.	1.7	7
123	Leukocyte trans-endothelial migration: JAMs add new pieces to the puzzle. Thrombosis and Haemostasis, 2003, 89, 13-7.	3.4	15
124	The Junctional Adhesion Molecule 3 (JAM-3) on Human Platelets is a Counterreceptor for the Leukocyte Integrin Mac-1. Journal of Experimental Medicine, 2002, 196, 679-691.	8.5	392
125	A Novel Antithrombotic Role for High Molecular Weight Kininogen as Inhibitor of Plasminogen Activator Inhibitor-1 Function. Journal of Biological Chemistry, 2002, 277, 32677-32682.	3.4	20
126	Inhibition of Platelet Adhesion and Aggregation by a Defined Region (Gly-486–Lys-502) of High Molecular Weight Kininogen. Journal of Biological Chemistry, 2002, 277, 23157-23164.	3.4	33

#	Article	IF	Citations
127	Urokinase receptor surface expression regulates monocyte adhesion in acute myocardial infarction. Blood, 2002, 100, 3611-3617.	1.4	63
128	Characterization of Human Chorionic Gonadotropin as a Novel Angiogenic Factor. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 5290-5296.	3.6	302
129	Molecular Interactions and Functional Interference between Vitronectin and Transforming Growth Factor-Î ² . Laboratory Investigation, 2002, 82, 37-46.	3.7	50
130	Staphylococcus aureus extracellular adherence protein serves as anti-inflammatory factor by inhibiting the recruitment of host leukocytes. Nature Medicine, 2002, 8, 687-693.	30.7	230
131	Factor VII and single-chain plasminogen activator-activating protease. FEBS Journal, 2001, 268, 3789-3796.	0.2	63
132	Localization of protein kinase A and vitronectin in resting platelets and their translocation onto fibrin fibers during clot formation. European Journal of Cell Biology, 2001, 80, 87-98.	3.6	20
133	Regulation of leukocyte recruitment by polypeptides derived from high molecular weight kininogen. FASEB Journal, 2001, 15, 2365-2376.	0.5	59
134	Urokinase receptor: a molecular organizer in cellular communication. Current Opinion in Cell Biology, 2000, 12, 621-628.	5.4	200
135	VLA-4 (α4β1) engagement defines a novel activation pathway for β2 integrin–dependent leukocyte adhesion involving the urokinase receptor. Blood, 2000, 96, 506-513.	1.4	60
136	Different mechanisms define the antiadhesive function of high molecular weight kininogen in integrin- and urokinase receptor–dependent interactions. Blood, 2000, 96, 514-522.	1.4	100
137	VLA-4 (α4β1) engagement defines a novel activation pathway for β2 integrin–dependent leukocyte adhesion involving the urokinase receptor. Blood, 2000, 96, 506-513.	1.4	18
138	Different mechanisms define the antiadhesive function of high molecular weight kininogen in integrin- and urokinase receptor–dependent interactions. Blood, 2000, 96, 514-522.	1.4	32
139	Molecular Mechanisms of Zinc-Dependent Leukocyte Adhesion Involving the Urokinase Receptor and \hat{l}^2 2-Integrins. Blood, 1999, 93, 2976-2983.	1.4	86
140	The role of plasminogen activator inhibitor-1 as inhibitor of platelet and megakaryoblastic cell adhesion. British Journal of Haematology, 1999, 104, 901-908.	2.5	23
141	Novel Glycosylated Forms of Human Plasma Endostatin and Circulating Endostatin-Related Fragments of Collagen XVâ€. Biochemistry, 1999, 38, 10217-10224.	2.5	57
142	Molecular Mechanisms of Zinc-Dependent Leukocyte Adhesion Involving the Urokinase Receptor and \hat{l}^2 2-Integrins. Blood, 1999, 93, 2976-2983.	1.4	32
143	Role of Vitronectin and Its Receptors in Haemostasis and Vascular Remodeling. Thrombosis Research, 1998, 89, 1-21.	1.7	229
144	Urokinase Receptor (CD87) Regulates Leukocyte Recruitment via \hat{I}^2 2 Integrins In Vivo. Journal of Experimental Medicine, 1998, 188, 1029-1037.	8.5	270

#	Article	IF	Citations
145	Vitronectin Concentrates Proteolytic Activity on the Cell Surface and Extracellular Matrix by Trapping Soluble Urokinase Receptor-Urokinase Complexes. Blood, 1998, 91, 2305-2312.	1.4	105
146	Vitronectin Concentrates Proteolytic Activity on the Cell Surface and Extracellular Matrix by Trapping Soluble Urokinase Receptor-Urokinase Complexes. Blood, 1998, 91, 2305-2312.	1.4	2
147	Differential modulation of cell adhesion by interaction between adhesive and counter-adhesive proteins: characterization of the binding of vitronectin to osteonectin (BM40, SPARC). Biochemical Journal, 1997, 324, 311-319.	3.7	83
148	Measurement of vitronectin content of human spermatozoa and vitronectin concentration within seminal fluid. Fertility and Sterility, 1997, 68, 709-713.	1.0	17
149	The Hemopexin-Type Repeats of Human Vitronectin Are Recognized byStreptococcus pyogenes. Biochemical and Biophysical Research Communications, 1997, 234, 445-449.	2.1	31
150	Plasminogen Activator Inhibitor-1 Represses Integrin- and Vitronectin-Mediated Cell Migration Independently of Its Function as an Inhibitor of Plasminogen Activation. Experimental Cell Research, 1997, 232, 420-429.	2.6	221
151	Identification of novel heparin-binding domains of vitronectin. FEBS Letters, 1997, 407, 169-172.	2.8	39
152	The intact urokinase receptor is required for efficient vitronectin binding: receptor cleavage prevents ligand interaction. FEBS Letters, 1997, 420, 79-85.	2.8	131
153	Induction of Vascular SMC Proliferation by Urokinase Indicates a Novel Mechanism of Action in Vasoproliferative Disorders. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 2848-2854.	2.4	76
154	The Urokinase Receptor Is a Major Vitronectin-Binding Protein on Endothelial Cells. Experimental Cell Research, 1996, 224, 344-353.	2.6	241
155	The Binding Protein for Globular Heads of Complement C1q, gC1qR. Journal of Biological Chemistry, 1996, 271, 26739-26744.	3.4	130
156	Structural and Functional Characterization of Vitronectin-Derived RGD-Containing Peptides from Human Hemofiltrate. FEBS Journal, 1996, 241, 557-563.	0.2	22
157	Subcutaneous injection of a cyclic peptide antagonist of vitronectin receptor–type integrins inhibits retinal neovascularization. Nature Medicine, 1996, 2, 529-533.	30.7	326
158	Fibronectin, laminin, vitronectin and their receptors at newly-formed capillaries in proliferative diabetic retinopathy. Experimental Eye Research, 1995, 60, 5-17.	2.6	71
159	The Versatility of Adhesion Receptor Ligands in Haemostasis: Morpho-Regulatory Functions of Vitronectin. Thrombosis and Haemostasis, 1995, 74, 258-265.	3.4	30
160	Multiple interactions between human vitronectin and Staphylococcus aureus. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1993, 1225, 57-63.	3.8	45
161	The role of fibrinolysis in the cross-talks among vessel wall components: the vitronectin-PAI-1 axis. Fibrinolysis, 1993, 7, 18-19.	0.5	1
162	Functional interaction of plasminogen activator inhibitor type 1 (PAI-1) and heparin. Biochemistry, 1991, 30, 1021-1028.	2.5	103

#	Article	IF	CITATIONS
163	Structure and Biological Role of Vitronectin. Annual Review of Cell Biology, 1991, 7, 275-310.	26.1	461
164	The role of vitronectin as multifunctional regulator in the hemostatic and immune systems. Blut, 1989, 59, 419-431.	1.2	78
165	The heparin binding domain of S-protein/vitronectin binds to complement components C7, C8, and C9 and perforin from cytolytic T-cells and inhibits their lytic activities. Biochemistry, 1988, 27, 4103-4109.	2.5	113
166	Extracellular Matrix and Host Cell Surfaces: Potential Sites of Pathogen Interaction., 0,, 87-104.		4
167	Extracellular Matrix Interactions with Gram-Positive Pathogens. , 0, , 89-99.		1