List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1208875/publications.pdf Version: 2024-02-01

		23567	24258
269	14,294	58	110
papers	citations	h-index	g-index
			0.070
287	287	287	9852
all docs	docs citations	times ranked	citing authors
287 all docs	287 docs citations	287 times ranked	9852 citing autho

LEE E EIDEN

#	Article	IF	CITATIONS
1	Relationships between constitutive and acute gene regulation, and physiological and behavioral responses, mediated by the neuropeptide PACAP. Psychoneuroendocrinology, 2022, 135, 105447.	2.7	4
2	Vasopressin acts as a synapse organizer in limbic regions by boosting <scp>PSD95</scp> and <scp>GluA1</scp> expression. Journal of Neuroendocrinology, 2022, 34, .	2.6	5
3	<scp>ERK</scp> â€dependent induction of the immediateâ€early gene Egr1 and the late gene Gpr50 contribute to two distinct phases of <scp>PACAP Gsâ€GPCR</scp> signaling for neuritogenesis. Journal of Neuroendocrinology, 2022, 34, .	2.6	2
4	<scp>RegPep2021</scp> , a confluence of new data, concepts, and perspectives in regulatory peptide biology, physiology, pharmacology, and neuroendocrinology. Journal of Neuroendocrinology, 2022, 34, .	2.6	0
5	GABAergic circuits of the basolateral amygdala and generation of anxiety after traumatic brain injury. Amino Acids, 2022, 54, 1229-1249.	2.7	2
6	ACE2 in the second act of COVIDâ€19 syndrome: Peptide dysregulation and possible correction with oestrogen. Journal of Neuroendocrinology, 2021, 33, e12935.	2.6	13
7	Behavioral role of PACAP signaling reflects its selective distribution in glutamatergic and GABAergic neuronal subpopulations. ELife, 2021, 10, .	6.0	20
8	Microglial synaptic pruning on axon initial segment spines of dentate granule cells: Sexually dimorphic effects of earlyâ€life stress and consequences for adult fear response. Journal of Neuroendocrinology, 2021, 33, e12969.	2.6	5
9	Cell-penetrating, antioxidant SELENOT mimetic protects dopaminergic neurons and ameliorates motor dysfunction in Parkinson's disease animal models. Redox Biology, 2021, 40, 101839.	9.0	20
10	Cyclic AMPâ€dependent Activation of ERK Via GLPâ€1 Receptor Signaling Requires the Neuroendocrine Cellâ€Selective Guanine Nucleotide Exchanger NCSâ€RapGEF2. FASEB Journal, 2021, 35, .	0.5	0
11	Cyclic AMPâ€dependent activation of ERK via GLPâ€1 receptor signalling requires the neuroendocrine cellâ€specific guanine nucleotide exchanger NCSâ€RapCEF2. Journal of Neuroendocrinology, 2021, 33, e12974.	2.6	3
12	Editorial for RegPep2020 special issue. Journal of Neuroendocrinology, 2021, 33, e13009.	2.6	0
13	ACE2 expression in rat brain: Implications for COVID-19 associated neurological manifestations. Experimental Neurology, 2021, 345, 113837.	4.1	50
14	Cocaine-Dependent Acquisition of Locomotor Sensitization and Conditioned Place Preference Requires D1 Dopaminergic Signaling through a Cyclic AMP, NCS-Rapgef2, ERK, and Egr-1/Zif268 Pathway. Journal of Neuroscience, 2021, 41, 711-725.	3.6	17
15	Regulatory peptides and systems biology: A new era of translational and reverseâ€ŧranslational neuroendocrinology. Journal of Neuroendocrinology, 2020, 32, e12844.	2.6	4
16	Peptide-Liganded G Protein-Coupled Receptors as Neurotherapeutics. ACS Pharmacology and Translational Science, 2020, 3, 190-202.	4.9	5
17	PAC1 deficiency attenuates progression of atherosclerosis in ApoE deficient mice under cholesterol-enriched diet. Immunobiology, 2020, 225, 151930.	1.9	3
18	VGLUTâ€VGAT expression delineates functionally specialised populations of vasopressin ontaining neurones including a glutamatergic perforant pathâ€projecting cell group to the hippocampus in rat and mouse brain. Journal of Neuroendocrinology, 2020, 32, e12831.	2.6	15

#	Article	IF	CITATIONS
19	Three-dimensional mapping of tyrosine hydroxylase in the transparent brain and adrenal of prenatal and pre-weaning mice: Comprehensive methodological flowchart and quantitative aspects of 3D mapping. Journal of Neuroscience Methods, 2020, 335, 108596.	2.5	3
20	Chromaffin Cells of the Adrenal Medulla: Physiology, Pharmacology, and Disease. , 2019, 9, 1443-1502.		45
21	Progress in regulatory peptide research. Annals of the New York Academy of Sciences, 2019, 1455, 5-11.	3.8	4
22	A Synaptically Connected Hypothalamic Magnocellular Vasopressin-Locus Coeruleus Neuronal Circuit and Its Plasticity in Response to Emotional and Physiological Stress. Frontiers in Neuroscience, 2019, 13, 196.	2.8	25
23	Editorial: Regulatory Peptides in Neuroscience and Endocrinology: A New Era Begins. Frontiers in Endocrinology, 2019, 10, 793.	3.5	0
24	Pituitary Adenylate Cyclase-Activating Peptide (PACAP)-Glutamate Co-transmission Drives Circadian Phase-Advancing Responses to Intrinsically Photosensitive Retinal Ganglion Cell Projections by Suprachiasmatic Nucleus. Frontiers in Neuroscience, 2019, 13, 1281.	2.8	16
25	PACAP deficiency aggravates atherosclerosis in ApoE deficient mice. Immunobiology, 2019, 224, 124-132.	1.9	11
26	Catestatin regulates vesicular quanta through modulation of cholinergic and peptidergic (PACAPergic) stimulation in PC12 cells. Cell and Tissue Research, 2019, 376, 51-70.	2.9	11
27	Two ancient neuropeptides, PACAP and AVP, modulate motivated behavior at synapses in the extrahypothalamic brain: a study in contrast. Cell and Tissue Research, 2019, 375, 103-122.	2.9	17
28	A GABAergic cell type in the lateral habenula links hypothalamic homeostatic and midbrain motivation circuits with sex steroid signaling. Translational Psychiatry, 2018, 8, 50.	4.8	78
29	PACAP signaling in stress: insights from the chromaffin cell. Pflugers Archiv European Journal of Physiology, 2018, 470, 79-88.	2.8	33
30	What's New in Endocrinology: The Chromaffin Cell. Frontiers in Endocrinology, 2018, 9, 711.	3.5	20
31	Linkage between hypothalamic homeostatic and midbrain motivation circuits and habenula enabling sex steroid modulation of motivation and behavior. FASEB Journal, 2018, 32, lb455.	0.5	0
32	Chromogranin A regulates vesicle storage and mitochondrial dynamics to influence insulin secretion. Cell and Tissue Research, 2017, 368, 487-501.	2.9	24
33	Guanine nucleotide exchange factor Epac2–dependent activation of the GTP-binding protein Rap2A mediates cAMP-dependent growth arrest in neuroendocrine cells. Journal of Biological Chemistry, 2017, 292, 12220-12231.	3.4	23
34	Differential Pharmacophore Definition of the cAMP Binding Sites of Neuritogenic cAMP Sensor-Rapgef2, Protein Kinase A, and Exchange Protein Activated by cAMP in Neuroendocrine Cells Using an Adenine-Based Scaffold. ACS Chemical Neuroscience, 2017, 8, 1500-1509.	3.5	8
35	NCS-Rapgef2, the Protein Product of the Neuronal <i>Rapgef2</i> Gene, Is a Specific Activator of D1 Dopamine Receptor-Dependent ERK Phosphorylation in Mouse Brain. ENeuro, 2017, 4, ENEURO.0248-17.2017.	1.9	28
36	Hypothalamic Vasopressinergic Projections Innervate Central Amygdala GABAergic Neurons: Implications for Anxiety and Stress Coping. Frontiers in Neural Circuits, 2016, 10, 92.	2.8	62

#	Article	IF	CITATIONS
37	Impact of Chromogranin A deficiency on catecholamine storage, catecholamine granule morphology and chromaffin cell energy metabolism in vivo. Cell and Tissue Research, 2016, 363, 693-712.	2.9	43
38	Interleukinâ€6â€mediated signaling in adrenal medullary chromaffin cells. Journal of Neurochemistry, 2016, 139, 1138-1150.	3.9	9
39	Loss of cerebellar neurons in the progression of lentiviral disease: effects of CNS-permeant antiretroviral therapy. Journal of Neuroinflammation, 2016, 13, 272.	7.2	11
40	Activation of the HPA axis and depression of feeding behavior induced by restraint stress are separately regulated by PACAPergic neurotransmission in the mouse. Stress, 2016, 19, 374-382.	1.8	33
41	C-terminal amidation of PACAP-38 and PACAP-27 is dispensable for biological activity at the PAC1 receptor. Peptides, 2016, 79, 39-48.	2.4	10
42	PACAPergic Synaptic Signaling and Circuitry Mediating Mammalian Responses to Psychogenic and Systemic Stressors. Current Topics in Neurotoxicity, 2016, , 711-729.	0.4	9
43	Cyclic Adenosine 3′,5′-Monophosphate Elevation and Biological Signaling through a Secretin Family Gs-Coupled G Protein–Coupled Receptor Are Restricted to a Single Adenylate Cyclase Isoform. Molecular Pharmacology, 2015, 87, 928-935.	2.3	13
44	Impact of PACAP and PAC1 receptor deficiency on the neurochemical and behavioral effects of acute and chronic restraint stress in male C57BL/6 mice. Stress, 2015, 18, 408-418.	1.8	46
45	Acute Response of the Hippocampal Transcriptome Following Mild Traumatic Brain Injury After Controlled Cortical Impact in the Rat. Journal of Molecular Neuroscience, 2015, 57, 282-303.	2.3	25
46	GABAergic interneuronal loss and reduced inhibitory synaptic transmission in the hippocampal CA1 region after mild traumatic brain injury. Experimental Neurology, 2015, 273, 11-23.	4.1	67
47	Satb2-Independent Acquisition of the Cholinergic Sudomotor Phenotype in Rodents. Cellular and Molecular Neurobiology, 2015, 35, 205-216.	3.3	3
48	Potential therapeutic target for malignant paragangliomas: ATP synthase on the surface of paraganglioma cells. American Journal of Cancer Research, 2015, 5, 1558-70.	1.4	10
49	Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP), A Master Regulator in Central and Peripheral Stress Responses. , 2014, , 246.		1
50	Theme C Metabolism. , 2014, , 63-64.		0
51	Theme G Drug Abuse and Addiction. , 2014, , 163-165.		0
52	Theme D Catecholamine Receptors and Catecholaminergic Signaling. , 2014, , 85-86.		0
53	Theme J Catecholamine Interactions with Other Transmitters. , 2014, , 233-234.		0
54	Temporal Course of Changes in Gene Expression Suggests a Cytokine-Related Mechanism for Long-Term Hippocampal Alteration after Controlled Cortical Impact. Journal of Neurotrauma, 2014, 31, 683-690.	3.4	38

#	Article	IF	CITATIONS
55	Theme A Catecholamine Biosynthesis and Storage. , 2014, , 1-2.		Ο
56	Separate Cyclic AMP Sensors for Neuritogenesis, Growth Arrest, and Survival of Neuroendocrine Cells. Journal of Biological Chemistry, 2014, 289, 10126-10139.	3.4	35
57	Induction of serpinb1a by <scp>PACAP</scp> or <scp>NGF</scp> is required for <scp>PC</scp> 12 cells survival after serum withdrawal. Journal of Neurochemistry, 2014, 131, 21-32.	3.9	15
58	Reduced GABAergic Inhibition in the Basolateral Amygdala and the Development of Anxiety-Like Behaviors after Mild Traumatic Brain Injury. PLoS ONE, 2014, 9, e102627.	2.5	104
59	Novel cAMP Sensor Links GPCR-Gs Signaling to ERK in Neuroscreen-1 Cells. , 2014, , 114.		0
60	Theme I Catecholamines in Integrative Function. , 2014, , 213-214.		0
61	Reassessment of Intrinsic Dopaminergic Innervation in the Human Enteric Nervous System – Clinical Implications. , 2014, , 31.		0
62	Theme B Catecholamine Release and Re-uptake. , 2014, , 35-36.		0
63	Theme F Psychiatry and Psychology. , 2014, , 145-147.		0
64	Theme H Catecholamines in the Periphery. , 2014, , 187-189.		0
65	Theme E Neurology. , 2014, , 117-119.		0
66	Species-specific vesicular monoamine transporter 2 (VMAT2) expression in mammalian pancreatic beta cells: implications for optimising radioligand-based human beta cell mass (BCM) imaging in animal models. Diabetologia, 2013, 56, 1047-1056.	6.3	32
67	PACAP signaling exerts opposing effects on neuroprotection and neuroinflammation during disease progression in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Neurobiology of Disease, 2013, 54, 32-42.	4.4	25
68	Preface. Advances in Pharmacology, 2013, 68, xiii-xv.	2.0	0
69	Neuropeptide–Catecholamine Interactions in Stress. Advances in Pharmacology, 2013, 68, 399-404.	2.0	24
70	Localization and Expression of VMAT2 Aross Mammalian Species. Advances in Pharmacology, 2013, 68, 319-334.	2.0	31
71	Discrete signal transduction pathway utilization by a neuropeptide (PACAP) and a cytokine (TNF-alpha) first messenger in chromaffin cells, inferred from coupled transcriptome-promoter analysis of regulated gene cohorts. Peptides, 2013, 45, 48-60.	2.4	6
72	PACAP-deficient mice show attenuated corticosterone secretion and fail to develop depressive behavior during chronic social defeat stress. Psychoneuroendocrinology, 2013, 38, 702-715.	2.7	106

#	Article	IF	CITATIONS
73	Rapgef2 Connects GPCR-Mediated cAMP Signals to ERK Activation in Neuronal and Endocrine Cells. Science Signaling, 2013, 6, ra51.	3.6	55
74	A New Site and Mechanism of Action for the Widely Used Adenylate Cyclase Inhibitor SQ22,536. Molecular Pharmacology, 2013, 83, 95-105.	2.3	29
75	A new molecular sensor controlling cAMP activation of ERK. FASEB Journal, 2013, 27, lb555.	0.5	0
76	Signaling through the neuropeptide GPCR PAC ₁ induces neuritogenesis <i>via</i> a single linear cAMP―and ERKâ€dependent pathway using a novel cAMP sensor. FASEB Journal, 2012, 26, 3199-3211.	0.5	60
77	Lentiviral Infection of Rhesus Macaques Causes Long-Term Injury to Cortical and Hippocampal Projections of Prostaglandin-Expressing Cholinergic Basal Forebrain Neurons. Journal of Neuropathology and Experimental Neurology, 2012, 71, 15-27.	1.7	7
78	Lipocalin 2: Novel component of proinflammatory signaling in Alzheimer's disease. FASEB Journal, 2012, 26, 2811-2823.	0.5	166
79	Immune-Neuroendocrine Integration at the Adrenal Gland: Cytokine Control of the Adrenomedullary Transcriptome. Journal of Molecular Neuroscience, 2012, 48, 413-419.	2.3	15
80	Expression of miRNAs and Their Cooperative Regulation of the Pathophysiology in Traumatic Brain Injury. PLoS ONE, 2012, 7, e39357.	2.5	70
81	ls PACAP the Major Neurotransmitter for Stress Transduction at the Adrenomedullary Synapse?. Journal of Molecular Neuroscience, 2012, 48, 403-412.	2.3	60
82	STC1 Induction by PACAP is Mediated Through cAMP and ERK1/2 but not PKA in Cultured Cortical Neurons. Journal of Molecular Neuroscience, 2012, 46, 75-87.	2.3	18
83	Neuritogenesis initiated via the GPCR PAC1 requires cAMP and ERK signaling organized in a single linear pathway independent of PKA or Epac. FASEB Journal, 2012, 26, lb563.	0.5	0
84	PAC1hop, null and hip receptors mediate differential signaling through cyclic AMP and calcium leading to splice variant-specific gene induction in neural cells. Peptides, 2011, 32, 1647-1655.	2.4	37
85	Pituitary Adenylate Cyclase-Activating Polypeptide Controls Stimulus-Transcription Coupling in the Hypothalamic-Pituitary-Adrenal Axis to Mediate Sustained Hormone Secretion During Stress. Journal of Neuroendocrinology, 2011, 23, 944-955.	2.6	53
86	VMAT2: a dynamic regulator of brain monoaminergic neuronal function interacting with drugs of abuse. Annals of the New York Academy of Sciences, 2011, 1216, 86-98.	3.8	132
87	PACAP: a master regulator of neuroendocrine stress circuits and the cellular stress response. Annals of the New York Academy of Sciences, 2011, 1220, 49-59.	3.8	109
88	COX1 and COX2 expression in non-neuronal cellular compartments of the rhesus macaque brain during lentiviral infection. Neurobiology of Disease, 2011, 42, 108-115.	4.4	13
89	A distinct trans-Golgi network subcompartment for sorting of synaptic and granule proteins in neurons and neuroendocrine cells. Journal of Cell Science, 2011, 124, 735-744.	2.0	26
90	The Host Range of Gammaretroviruses and Gammaretroviral Vectors Includes Post-Mitotic Neural Cells. PLoS ONE, 2011, 6, e18072.	2.5	8

#	Article	IF	CITATIONS
91	Microarrayâ€based analysis of the †stress transcriptome': application to gene discovery and therapeutics. FASEB Journal, 2011, 25, 1090.6.	0.5	0
92	Commentary on Chapters â€~Clinical and Developmental Aspects' and â€~Stress Responses of the Adrenal Medulla'. Cellular and Molecular Neurobiology, 2010, 30, 1371-1375.	3.3	2
93	Neuropeptides, Growth Factors, and Cytokines: A Cohort of Informational Molecules Whose Expression Is Up-Regulated by the Stress-Associated Slow Transmitter PACAP in Chromaffin Cells. Cellular and Molecular Neurobiology, 2010, 30, 1441-1449.	3.3	19
94	Cellular distribution of chromogranin A in excitatory, inhibitory, aminergic and peptidergic neurons of the rodent central nervous system. Regulatory Peptides, 2010, 165, 36-44.	1.9	17
95	PAC1hop receptor activation facilitates catecholamine secretion selectively through 2-APB-sensitive Ca2+ channels in PC12 cells. Cellular Signalling, 2010, 22, 1420-1426.	3.6	27
96	PACAP-cytokine interactions govern adrenal neuropeptide biosynthesis after systemic administration of LPS. Neuropharmacology, 2010, 58, 208-214.	4.1	17
97	Corrigendum to "PACAP-cytokine interactions govern adrenal neuropeptide biosynthesis after systemic administration of LPS―[Neuropharmacology 58 (2010) 208–214]. Neuropharmacology, 2010, 58, 1187.	4.1	1
98	Stress hormone synthesis in mouse hypothalamus and adrenal gland triggered by restraint is dependent on pituitary adenylate cyclase-activating polypeptide signaling. Neuroscience, 2010, 165, 1025-1030.	2.3	108
99	Timing the Phox-Trot: Duration of Phox2a-Dependent Transcription Is Controlled by an Intramolecular Dephosphorylation/Phosphorylation Clock. Molecular and Cellular Biology, 2009, 29, 4875-4877.	2.3	0
100	Temporally Restricted Role of Retinal PACAP: Integration of the Phase-Advancing Light Signal to the SCN. Journal of Biological Rhythms, 2009, 24, 126-134.	2.6	23
101	Subcellular Localization of Chromogranins, Calcium ChanneAmine Carriers, and Proteins of the Exocytotic Machinery in Bovine Splenic Nerve. Journal of Neurochemistry, 2008, 72, 1110-1116.	3.9	37
102	Discovery of Pituitary Adenylate Cyclaseâ€Activating Polypeptideâ€Regulated Genes through Microarray Analyses in Cell Culture and <i>In Vivo</i> . Annals of the New York Academy of Sciences, 2008, 1144, 6-20.	3.8	22
103	Sweat gland innervation is pioneered by sympathetic neurons expressing a cholinergic/noradrenergic co-phenotype in the mouse. Neuroscience, 2008, 156, 310-318.	2.3	30
104	A cAMP-Dependent, Protein Kinase A-Independent Signaling Pathway Mediating Neuritogenesis through Egr1 in PC12 Cells. Molecular Pharmacology, 2008, 73, 1688-1708.	2.3	86
105	pathFinder: A Static Network Analysis Tool for Pharmacological Analysis of Signal Transduction PathwaysA presentation from the Experimental Biology 2008 Meeting, San Diego, California, USA, 5 to 9 April 2008. Science Signaling, 2008, 1, pt4.	3.6	6
106	Tumor Necrosis Factor (TNF)-α Persistently Activates Nuclear Factor-κB Signaling through the Type 2 TNF Receptor in Chromaffin Cells: Implications for Long-Term Regulation of Neuropeptide Gene Expression in Inflammation. Endocrinology, 2008, 149, 2840-2852.	2.8	27
107	The Hop Cassette of the PAC1 Receptor Confers Coupling to Ca2+ Elevation Required for Pituitary Adenylate Cyclase-activating Polypeptide-evoked Neurosecretion. Journal of Biological Chemistry, 2007, 282, 8079-8091.	3.4	41
108	Regulation of PC12 Cell Differentiation by cAMP Signaling to ERK Independent of PKA: Do All the Connections Add Up?. Science's STKE: Signal Transduction Knowledge Environment, 2007, 2007, pe15.	3.9	50

#	Article	IF	CITATIONS
109	Increased APOBEC3G Expression Is Associated With Extensive G-to-A Hypermutation in Viral DNA in Rhesus Macaque Brain During Lentiviral Infection. Journal of Neuropathology and Experimental Neurology, 2007, 66, 901-912.	1.7	7
110	Meta-analysis of microarray-derived data from PACAP-deficient adrenal gland in vivo and PACAP-treated chromaffin cells identifies distinct classes of PACAP-regulated genes. Peptides, 2007, 28, 1871-1882.	2.4	17
111	The tissue specifier element (TSE) functions as a Ca2+ response element for Ca2+ and cAMP synergistic signaling to the human vasoactive intestinal polypeptide (VIP) gene. FASEB Journal, 2007, 21, A1035.	0.5	0
112	PACAP acts through a cyclic AMPâ€initiated ERK activation pathway independent of PKA and requiring calcium coâ€signaling for transcription linked to differentiation in PC12â€G cells. FASEB Journal, 2007, 21, A792.	0.5	1
113	PACAPâ€dependent cellular plasticity in the mouse adrenal gland. FASEB Journal, 2007, 21, A1249.	0.5	4
114	The hop domain of the PAC1 receptor confers coupling to intracellular Ca 2+ elevation required for PACAPâ€evoked catecholamine secretion. FASEB Journal, 2007, 21, A982.	0.5	0
115	Neuroprotection by endogenous and exogenous PACAP following stroke. Regulatory Peptides, 2006, 137, 4-19.	1.9	100
116	Foreword to Special Issue: Molecular and Cellular Mechanisms of VIP, PACAP and Secretin Signaling Applied to Systems Biology. Regulatory Peptides, 2006, 137, 1-3.	1.9	0
117	Fractalkine Expression in the Rhesus Monkey Brain During Lentivirus Infection and Its Control by 6-Chloro-2',3'-Dideoxyguanosine. Journal of Neuropathology and Experimental Neurology, 2006, 65, 1170-1180.	1.7	8
118	The neurotrophic effects of PACAP in PC12 cells: control by multiple transduction pathways. Journal of Neurochemistry, 2006, 98, 321-329.	3.9	108
119	Cycloheximide treatment to identify components of the transitional transcriptome in PACAP-induced PC12 cell differentiation. Journal of Neurochemistry, 2006, 98, 1229-1241.	3.9	26
120	Three Types of Tyrosine Hydroxylase-Positive CNS Neurons Distinguished by Dopa Decarboxylase and VMAT2 Co-Expression. Cellular and Molecular Neurobiology, 2006, 26, 657-676.	3.3	115
121	Vesicular Monoamine Transporter 2 (VMAT2) Expression in Hematopoietic Cells and in Patients with Systemic Mastocytosis. Journal of Histochemistry and Cytochemistry, 2006, 54, 201-213.	2.5	30
122	Canonical and noncanonical cAMPâ€dependent signaling pathways activated by PACAP in neuroendocrine cells. FASEB Journal, 2006, 20, A694.	0.5	0
123	Phox2 and dHAND Transcription Factors Select Shared and Unique Target Genes in the Noradrenergic Cell Type. Journal of Molecular Neuroscience, 2005, 27, 281-292.	2.3	19
124	Coexpression of cholinergic and noradrenergic phenotypes in human and nonhuman autonomic nervous system. Journal of Comparative Neurology, 2005, 492, 370-379.	1.6	90
125	Comparison of Cannabidiol, Antioxidants, and Diuretics in Reversing Binge Ethanol-Induced Neurotoxicity. Journal of Pharmacology and Experimental Therapeutics, 2005, 314, 780-788.	2.5	150
126	Fusion Polypeptides That Inhibit Exocytosis: Fusing Aptamer and Cell-Penetrating Peptide Technologies and Pharmacologies. Molecular Pharmacology, 2005, 67, 980-982.	2.3	8

127 rhesus macaqu	biosynthesis in brain microglia and macrophages during lentivirus infection in the e is sensitive to antiretroviral treatment with 6-chloro-2â€2,3â€2-dideoxyguanosine.		
67	f Disease, 2005, 20, 12-26.	4.4	28
	s generated via splicing of an alternative transcript from the ArgBP2 gene locus. 26, 1278-1282.	2.4	6
	CAP acts as a stress response peptide to protect cerebellar neurons from ethanol or Peptides, 2005, 26, 2518-2524.	2.4	76
130 Cells and Lange	onoamine Transporter 2 (VMAT2) Is Expressed by Normal and Tumor Cutaneous Mast rhans Cells of the Skin but Is Absent from Langerhans Cell Histiocytosis. Journal of and Cytochemistry, 2004, 52, 779-788.	2.5	13
131 Transcription a Kinase 1/2 and	atory Cytokines Tumor Necrosis Factor-α and Interleukin-1 Stimulate Neuropeptide Gene nd Secretion in Adrenochromaffin Cells via Activation of Extracellularly Regulated p38 Protein Kinases, and Activator Protein-1 Transcription Factors. Molecular 2004. 18. 1721-1739.	3.7	43
132 A Two-Way Bio	nformatic Street. Science, 2004, 306, 1437-1437.	12.6	4
133 monkey are co	en and indoleamine-2,3-dioxygenase expression during lentiviral infection of rhesus nomitantly lowered by 6-chloro-2',3'-dideoxyguanosine. European Journal of 2004, 19, 2997-3005.	2.6	26
134 accumulation a	nine transporter family (SLC18): amine/proton antiporters required for vesicular nd regulated exocytotic secretion of monoamines and acetylcholine. Pflugers Archiv al of Physiology, 2004, 447, 636-640.	2.8	158
A restrictive ele 135 cells in collabor 1091-1101.	ment 1 (RE-1) in the VIP gene modulates transcription in neuronal and non-neuronal ation with an upstream tissue specifier element. Journal of Neurochemistry, 2004, 88,	3.9	7
136 Transcriptional	control of the cholinergic gene locus. , 2004, , 125-131.		1
137 The Chromogra Neuroendocrin	nins: Their Roles in Secretion from Neuroendocrine Cells and as Markers for e Neoplasia. Endocrine Pathology, 2003, 14, 3-24.	9.0	84
138 Chemical codir catecholamine	g of the human gastrointestinal nervous system: Cholinergic, VIPergic, and gic phenotypes. Journal of Comparative Neurology, 2003, 459, 90-111.	1.6	180
139 vesicular acety	f a region from the human cholinergic gene locus that targets expression of the choline transporter to a subset of neurons in the medial habenular nucleus in e. Journal of Neurochemistry, 2003, 87, 1174-1183.	3.9	11
	mogranin A and the control of secretory granule genesis and maturation. Trends in and Metabolism, 2003, 14, 56-57.	7.1	23
141 Pheochromocy	Suppression Subtractive Hybridization Analyses of Gene Expression in coma Cells Reveal Pleiotropic Effects of Pituitary Adenylate Cyclase-Activating Cell Proliferation, Survival, and Adhesion. Endocrinology, 2003, 144, 2368-2379.	2.8	57
142 Element-Bindin	ted Signaling Pathway Propagated through Calcineurin and cAMP Response g Protein Activates Proenkephalin Gene Transcription after Depolarization. Molecular 2003, 64, 1503-1511.	2.3	12
	ne Two Isoforms of the Vesicular Monoamine Transporter (VMAT1 and VMAT2) in the reas and Pancreatic Endocrine Tumors. Journal of Histochemistry and Cytochemistry, -1040.	2.5	114

144 Signaling During Exocytosis. , 2003, , 375-392.

#	Article	IF	CITATIONS
145	Pituitary adenylate cyclase-activating polypeptide is a sympathoadrenal neurotransmitter involved in catecholamine regulation and glucohomeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 461-466.	7.1	236
146	Coincident Elevation of cAMP and Calcium Influx by PACAP-27 Synergistically Regulates Vasoactive Intestinal Polypeptide Gene Transcription through a Novel PKA-Independent Signaling Pathway. Journal of Neuroscience, 2002, 22, 5310-5320.	3.6	53
147	Analysis of the PC12 cell transcriptome after differentiation with pituitary adenylate cyclase-activating polypeptide (PACAP). Journal of Neurochemistry, 2002, 83, 1272-1284.	3.9	64
148	Pituitary Adenylate Cyclase-Activating Polypeptide Regulation of Vasoactive Intestinal Polypeptide Transcription Requires Ca2+ Influx and Activation of the Serine/Threonine Phosphatase Calcineurin. Journal of Neurochemistry, 2002, 73, 1769-1772.	3.9	22
149	Large Dense ore Secretory Granule Biogenesis Is under the Control of Chromogranin A in Neuroendocrine Cells. Annals of the New York Academy of Sciences, 2002, 971, 323-331.	3.8	13
150	Role of Protein Kinases in Neuropeptide Gene Regulation by PACAP in Chromaffin Cells. Annals of the New York Academy of Sciences, 2002, 971, 474-490.	3.8	8
151	PC12 Cells as a Model to Study the Neurotrophic Activities of PACAP. Annals of the New York Academy of Sciences, 2002, 971, 491-496.	3.8	41
152	Signaling Pathways for PC12 Cell Differentiation: Making the Right Connections. Science, 2002, 296, 1648-1649.	12.6	746
153	Independent patterns of transcription for the products of the rat cholinergic gene locus. Neuroscience, 2001, 104, 633-642.	2.3	31
154	Chromogranin A, an "On/Off―Switch Controlling Dense-Core Secretory Granule Biogenesis. Cell, 2001, 106, 499-509.	28.9	395
155	Chemical neuroanatomy of the vesicular amine transporters. FASEB Journal, 2000, 14, 2435-2449.	0.5	126
156	Somatomotor neuron-specific expression of the human cholinergic gene locus in transgenic mice. Neuroscience, 2000, 96, 707-722.	2.3	15
157	Both Inducible and Constitutive Activator Protein-1-Like Transcription Factors Are Used for Transcriptional Activation of the Galanin Gene by Different First and Second Messenger Pathways. Molecular Pharmacology, 1999, 56, 162-169.	2.3	26
158	The <i>cat-1</i> Gene of <i>Caenorhabditis elegans</i> Encodes a Vesicular Monoamine Transporter Required for Specific Monoamine-Dependent Behaviors. Journal of Neuroscience, 1999, 19, 72-84.	3.6	240
159	Two Separate Cis-active Elements of the Vasoactive Intestinal Peptide Gene Mediate Constitutive and Inducible Transcription by Binding Different Sets of AP-1 Proteins. Journal of Biological Chemistry, 1999, 274, 25588-25593.	3.4	10
160	Expression of Vesicular Monoamine Transporters in Endocrine Hyperplasia and Endocrine Tumors of the Oxyntic Stomach. Digestion, 1999, 60, 428-439.	2.3	53
161	Synergistic action of upstream elements and a promoter-proximal CRE is required for neuroendocrine cell-specific expression and second-messenger regulation of the gene encoding the human secretory protein secretogranin II. Molecular and Cellular Endocrinology, 1999, 157, 55-66.	3.2	14
162	Upregulation of COX-2 and CGRP Expression in Resident Cells of the Borna Disease Virus-Infected Brain Is Dependent upon Inflammation. Neurobiology of Disease, 1999, 6, 15-34.	4.4	33

#	Article	IF	CITATIONS
163	The SIV-infected rhesus monkey model for HIV-associated dementia and implications for neurological diseases. Journal of Leukocyte Biology, 1999, 65, 466-474.	3.3	31
164	PACAP Activates Calcium Influx-Dependent and -Independent Pathways to Couple Met-Enkephalin Secretion and Biosynthesis in Chromaffin Cells. Journal of Molecular Neuroscience, 1998, 11, 43-56.	2.3	37
165	Cis-Regulatory Elements Controlling Basal and Inducible VIP Gene Transcription. Annals of the New York Academy of Sciences, 1998, 865, 10-26.	3.8	15
166	VIP and NPY Expression during Differentiation of Cholinergic and Noradrenergic Sympathetic Neuronsa. Annals of the New York Academy of Sciences, 1998, 865, 537-541.	3.8	34
167	Vesicular amine transporter expression and isoform selection in developing brain, peripheral nervous system and gut. Developmental Brain Research, 1998, 106, 181-204.	1.7	55
168	From the cholinergic gene locus to the cholinergic neuron. Journal of Physiology (Paris), 1998, 92, 385-388.	2.1	18
169	Cholinergic neurons and terminal fields revealed by immunohistochemistry for the vesicular acetylcholine transporter. I. Central nervous system. Neuroscience, 1998, 84, 331-359.	2.3	242
170	Cholinergic neurons and terminal fields revealed by immunohistochemistry for the vesicular acetylcholine transporter. II. The peripheral nervous system. Neuroscience, 1998, 84, 361-376.	2.3	166
171	Cutaneous Merkel cells of the rat contain both dynorphin A and vesicular monoamine transporter type 1 (VMAT1) immunoreactivity. Canadian Journal of Physiology and Pharmacology, 1998, 76, 334-339.	1.4	13
172	Five Discrete Cis-active Domains Direct Cell Type-specific Transcription of the Vasoactive Intestinal Peptide (VIP) Gene. Journal of Biological Chemistry, 1998, 273, 17086-17094.	3.4	27
173	The Cholinergic Gene Locus. Journal of Neurochemistry, 1998, 70, 2227-2240.	3.9	188
174	Tracking Members of the Simian Immunodeficiency Virus deltaB670 Quasispecies Population In Vivo at Single-Cell Resolution. Journal of Virology, 1998, 72, 113-120.	3.4	24
175	Target-independent cholinergic differentiation in the rat sympathetic nervous system. Proceedings of the United States of America, 1997, 94, 4149-4154.	7.1	65
176	A Neuronal and Neuroanatomical Correlate of HIV-1 Encephalopathy Relative to HIV-1 Encephalitis in HIV-1-infected Children. Journal of Neuropathology and Experimental Neurology, 1997, 56, 974-987.	1.7	13
177	Transcription Regulation Coupled to Calcium and Protein Kinase Signaling Systems through TRE-and CRE-Like Sequences in Neuropeptide Genes. Advances in Pharmacology, 1997, 42, 264-268.	2.0	14
178	A new approach to investigating the relationship between productive infection and cytopathicity in vivo. Nature Medicine, 1997, 3, 218-221.	30.7	39
179	Upstream sequencing and functional characterization of the human cholinergic gene locus. Journal of Molecular Neuroscience, 1997, 9, 223-236.	2.3	31
180	Neuropeptide genes: Targets of activity-dependent signal transduction. Peptides, 1996, 17, 721-728.	2.4	37

#	Article	IF	CITATIONS
181	In VitroEffects of Anti-HIV Immunotoxins Directed against Multiple Epitopes on HIV Type 1 Envelope Glycoprotein 160. AIDS Research and Human Retroviruses, 1996, 12, 1041-1051.	1.1	32
182	Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 5166-5171.	7.1	419
183	Visualization of the vesicular acetylcholine transporter in cholinergic nerve terminals and its targeting to a specific population of small synaptic vesicles Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 3547-3552.	7.1	279
184	Chapter 5 The VAChT/ChAT "cholinergic gene locus― new aspects of genetic and vesicular regulation of cholinergic function. Progress in Brain Research, 1996, 109, 69-82.	1.4	28
185	Primate lentivirus-associated encephalopathy. Mental Retardation and Developmental Disabilities Research Reviews, 1996, 2, 257-263.	3.6	0
186	Tissueâ€5pecific Expression of the Vasoactive Intestinal Peptide Gene Requires Both an Upstream Tissue Specifier Element and the 5′ Proximal Cyclic AMPâ€Responsive Element. Journal of Neurochemistry, 1996, 67, 1872-1881.	3.9	19
187	Human and monkey cholinergic neurons visualized in paraffin-embedded tissues by immunoreactivity for VAChT, the vesicular acetylcholine transporter. Journal of Molecular Neuroscience, 1995, 6, 225-235.	2.3	75
188	Reserpine- and tetrabenazine-sensitive transport of3H-histamine by the neuronal isoform of the vesicular monoamine transporter. Journal of Molecular Neuroscience, 1995, 6, 277-287.	2.3	40
189	Rapid and Long-Lasting Increase in Galanin mRNA Levels in Rat Adrenal Medulla following Insulin-Induced Reflex Splanchnic Nerve Stimulation. Neuroendocrinology, 1995, 62, 611-618.	2.5	23
190	An early increase in somatostatin mRNA expression in the frontal cortex of rhesus monkeys infected with simian immunodeficiency virus Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 1371-1375.	7.1	23
191	Molecular biology of the vesicular ACh transporter. Trends in Neurosciences, 1995, 18, 218-224.	8.6	146
192	Chromogranin A: current status as a precursor for bioactive peptides and a granulogenic/sorting factor in the regulated secretory pathway. Regulatory Peptides, 1995, 58, 65-88.	1.9	159
193	Distribution of the vesicular acetylcholine transporter (VAChT) in the central and peripheral nervous systems of the rat. Journal of Molecular Neuroscience, 1994, 5, 1-26.	2.3	101
194	Localization of vesicular monoamine transporter isoforms (VMAT1 and VMAT2) to endocrine cells and neurons in rat. Journal of Molecular Neuroscience, 1994, 5, 149-164.	2.3	214
195	Pan-neuronal expression of chromogranin A in rat nervous system. Peptides, 1994, 15, 263-279.	2.4	39
196	Cloning and expression of the vesamicol binding protein from the marine rayTorpedo. FEBS Letters, 1994, 342, 97-102.	2.8	97
197	Effects of chronic zidovudine administration on CNS function and virus burden after perinatal SIV infection in rhesus monkeys. Advances in Neuroimmunology, 1994, 4, 233-237.	1.8	7
198	Cytopathologic and Neurochemical Correlates of Progression to Motor/Cognitive Impairment in SIV-Infected Rhesus Monkeys. Journal of Neuropathology and Experimental Neurology, 1994, 53, 165-175.	1.7	75

#	Article	IF	CITATIONS
199	Functional Identification and Molecular Cloning of a Human Brain Vesicle Monoamine Transporter. Journal of Neurochemistry, 1993, 61, 2314-2317.	3.9	143
200	The class II MHC and HIV-1 binding surfaces of CD4. Trends in Microbiology, 1993, 1, 119-120.	7.7	1
201	Neuro-AIDS: primate lentivirus infection and the brain. Advances in Neuroimmunology, 1993, 3, 97-127.	1.8	3
202	AIDS and the Central Nervous System: Examining Pathobiology and Testing Therapeutic Strategies in the SIV-Infected Rhesus Monkey. Annals of the New York Academy of Sciences, 1993, 693, 229-244.	3.8	6
203	Expression cloning of a reserpine-sensitive vesicular monoamine transporter Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 10993-10997.	7.1	444
204	CD4(81–92)-based peptide derivatives. Biochemical Pharmacology, 1992, 43, 1785-1796.	4.4	13
205	Spontaneous electrical activity regulates vasoactive intestinal peptide expression in dissociated spinal cord cell cultures. Molecular Brain Research, 1991, 10, 235-240.	2.3	41
206	Regional distribution and partial molecular characterization of CD4-related mRNA in human brain and peripheral tissues. Molecular Brain Research, 1991, 10, 23-31.	2.3	9
207	Dual presence of chromogranin A-like immunoreactivity in a population of endocrine-like cells and in nerve fibers in the human anal canal. Neuroscience Letters, 1991, 130, 190-194.	2.1	12
208	Calcium-dependent regulation of the enkephalin phenotype by neuronal activity during early ontogeny. Journal of Neuroscience Research, 1991, 28, 140-148.	2.9	38
209	The Bovine Chromogranin A Gene: Structural Basis for Hormone Regulation and Generation of Biologically Active Peptides. Molecular Endocrinology, 1991, 5, 1651-1660.	3.7	54
210	Functional expression of dihydropyridine-insensitive calcium channels during PC12 cell differentiation by nerve growth factor (NGF), oncogenic ras, or src tyrosine kinase. Cellular and Molecular Neurobiology, 1990, 10, 237-255.	3.3	23
211	Galanin Gene Expression in Chromaffin Cells Is Controlled by Calcium and Protein Kinase Signaling Pathways. Endocrinology, 1990, 127, 3096-3102.	2.8	48
212	Neuropeptide content and connectivity of the rat claustrum. Brain Research, 1990, 523, 245-250.	2.2	27
213	Chromogranin A Messenger RNA Expression in the Rat Anterior Pituitary Is Permissively Regulated by the Adrenal Gland. Neuroendocrinology, 1989, 49, 107-110.	2.5	19
214	Phylogenetic Distribution of Peptides Related to Chromogranins A and B. Journal of Neurochemistry, 1988, 50, 1066-1073.	3.9	59
215	Processing of chromogranin A within chromaffin granules starts at C- and N-terminal cleavage sites. FEBS Letters, 1988, 231, 67-70.	2.8	78
216	Primary structure of rat chromogranin A and distribution of its mRNA. FEBS Letters, 1988, 227, 115-121.	2.8	157

#	Article	IF	CITATIONS
217	The Regulation of Vasoactive Intestinal Peptide Synthesis in Neuroblastoma and Chromaffin Cells. Annals of the New York Academy of Sciences, 1988, 527, 68-76.	3.8	10
218	Ontogeny of enkephalin- and VIP-containing neurons in dissociated cultures of embryonic mouse spinal cord and dorsal root ganglia. Developmental Brain Research, 1988, 44, 141-150.	1.7	10
219	Calcium requirements for barium stimulation of enkephalin and vasoactive intestinal peptide biosynthesis in adrenomedullary chromaffin cells. Neuropeptides, 1988, 11, 39-45.	2.2	11
220	THE SEQUENCE OF PORCINE CHROMOGRANIN A MESSENGER RNA DEMONSTRATES CHROMOGRANIN A CAN SERVE AS THE PRECURSOR FOR THE BIOLOGICALLY ACTIVE HORMONE, PANCREASTATIN. Endocrinology, 1988, 122, 2339-2341.	2.8	196
221	Glucocorticoid- and Nerve Growth Factor-Induced Changes in Chromogranin A Expression Define Two Different Neuronal Phenotypes in PC12 Cells. Molecular Endocrinology, 1988, 2, 921-927.	3.7	50
222	Chromogranin A Biosynthetic Cell Populations in Bovine Endocrine and Neuronal Tissues: Detection by <i>in Situ</i> Hybridization Histochemistry. Molecular Endocrinology, 1988, 2, 368-374.	3.7	21
223	Regulation of Enkephalin, VIP, and Chromogranin Biosynthesis in Actively Secreting Chromaffin Cells Annals of the New York Academy of Sciences, 1987, 493, 308-323.	3.8	54
224	Chromogranin A: The Primary Structure Deduced from cDNA Clones Reveals the Presence of Pairs of Basic Amino Acids. Annals of the New York Academy of Sciences, 1987, 493, 351-378.	3.8	35
225	Differential Role of Calcium in Stimulus-Secretion-Synthesis Coupling in Lactotrophs and Corticotrophs of Rat Anterior Pituitary. Annals of the New York Academy of Sciences, 1987, 493, 577-580.	3.8	1
226	Elevation of Intracellular Cyclic AMP by Corticotropin-Releasing Factor Links Secretion of ?-Endorphin and Biosynthesis of Proopiomelanocortin in Cultured Anterior Pituitary and AtT-20 Cells. Annals of the New York Academy of Sciences, 1987, 494, 104-107.	3.8	3
227	Measurement of mRNA specific for preprocholecystokinin in rat caudatoputamen and areas projecting to it. Neurochemistry International, 1987, 10, 521-524.	3.8	8
228	The enkephalin-containing cell: Strategies for polypeptide synthesis and secretion throughout the neuroendocrine system. Cellular and Molecular Neurobiology, 1987, 7, 339-352.	3.3	57
229	Is chromogranin a prohormone?. Nature, 1987, 325, 301-301.	27.8	215
230	Chromogranin A Synthesis and Secretion in Chromaffin Cells. Journal of Neurochemistry, 1987, 49, 65-74.	3.9	41
231	Enkephalin and Neuropeptide Y: Two colocalized neuropeptides are independently regulated in primary cultures of bovine chromaffin cells. Neuropeptides, 1986, 7, 315-327.	2.2	36
232	Bovine chromogranin A sequence and distribution of its messenger RNA in endocrine tissues. Nature, 1986, 323, 82-86.	27.8	315
233	Metorphamide Levels in Chromaffin Cells Increase After Treatment with Reserpine. Journal of Neurochemistry, 1986, 46, 1651-1654.	3.9	12

0

#	Article	IF	CITATIONS
235	Methionine and leucine enkephalin in rat neurohypophysis: different responses to osmotic stimuli and T2 toxin. Science, 1985, 228, 606-608.	12.6	60
236	Specific Regulation of Vasoactive Intestinal Polypeptide Biosynthesis by Phorbol Ester in Bovine Chromaffin Cells*. Endocrinology, 1985, 117, 1020-1026.	2.8	51
237	Cholecystokinin innervation of the ventral striatum: A morphological and radioimmunological study. Neuroscience, 1985, 14, 427-453.	2.3	450
238	vasoactive intestinal polypeptide afferents to the bed nucleus of the stria terminalis in the rat: An immunohistochemical and biochemical study. Neuroscience, 1985, 15, 999-1013.	2.3	44
239	Neuropeptide Y and peptide YY neuronal and endocrine systems. Peptides, 1985, 6, 755-768.	2.4	293
240	Elevated potassium stimulates enkephalin biosynthesis in bovine chromaffin cells. Neuropeptides, 1985, 6, 543-552.	2.2	56
241	(Met)enkephalin and carboxypeptidase processing enzyme are co-released from chromaffin cells by cholinergic stimulation. Biochemical and Biophysical Research Communications, 1985, 128, 563-570.	2.1	24
242	Gonadotropin-releasing hormone (Gn-RH) in striped mullet (Mugil cephalus), milkfish (Chanos) Tj ETQq0 0 0 rgBT Comparative Endocrinology, 1984, 55, 174-181.	/Overlock 1.8	10 Tf 50 46 73
243	Nicotinic receptor stimulation activates enkephalin release and biosynthesis in adrenal chromaffin cells. Nature, 1984, 312, 661-663.	27.8	209
244	Two peptidases that convert 125 I-Lys-Arg(Met)enkephalin and 125 I-(Met)enkephalin-Arg6 , respectively, to 125 I-(Met)enkephalin in bovine adrenal medullary chromaffin granules. FEBS Letters, 1984, 172, 212-218.	2.8	33
245	[LEU5]enkephalin inhibits norepinephrine-induced contraction of rat aorta. European Journal of Pharmacology, 1984, 105, 189-191.	3.5	10
246	Leucine-enkephalin increases norepinephrine-stimulated chronotropy and 45Ca++ uptake in guinea-pig atria. Neuropeptides, 1984, 4, 185-191.	2.2	15
247	Leucine-enkephalin modulation of catecholamine positive chronotropy in rat atria is receptor-specific and calcium-dependent. Neuropeptides, 1984, 4, 101-108.	2.2	31
248	The use of a Cloned cDNA Probe and Peptide Radioimmunoassay to Examine Transcriptional and Translational Regulation of Enkephalin Expression in Eukaryotic Cells. , 1984, , 299-311.		1
249	Primary cultures of bovine chromaffin cells synthesize and secrete vasoactive intestinal polypeptide (VIP). Life Sciences, 1983, 33, 687-693.	4.3	79
250	Cyclic adenosine monophosphate regulates vasoactive intestinal polypeptide and enkephalin biosynthesis in cultured bovine chromaffin cells. Neuropeptides, 1983, 4, 1-9.	2.2	79
251	The distribution of cholecystokinin and vasoactive intestinal peptide in rhesus monkey brain as determined by radioimmunoassay. Neuropeptides, 1983, 3, 337-344.	2.2	20
252	Leucine enkephalin antagonizes norepinephrine-induced 45Ca++ accumulation in rat atria. Biochemical and Biophysical Research Communications, 1983, 117, 536-540.	2.1	13

#	Article	IF	CITATIONS
253	Recombinant DNA methods in neuroendocrinology: New answers to old questions. Peptides, 1982, 3, 217-221.	2.4	3
254	The effect of methylazoxymethanol acetate (MAM) on the developing rat retina. Experimental Eye Research, 1982, 35, 351-361.	2.6	7
255	Enkephalins modulate the responsiveness of rat atria in vitro to norepinephrine. Peptides, 1982, 3, 475-478.	2.4	44
256	Two chemically and immunologically distinct forms of luteinizing hormone-releasing hormone are differentially expressed in frog neural tissues. Peptides, 1982, 3, 323-327.	2.4	72
257	Distribution of vasoactive intestinal polypeptide (VIP) in the rat brain stem nuclei. Brain Research, 1982, 231, 472-477.	2.2	114
258	Characteristics of Protein Carboxyl Methylation in the Rat Hypothalamus. Journal of Neurochemistry, 1982, 38, 631-637.	3.9	11
259	Studies on the Presence of Angiotensin II in Rat Brain. Journal of Neurochemistry, 1982, 38, 816-820.	3.9	32
260	A carboxypeptidase processing enzyme for enkephalin precursors. Nature, 1982, 295, 341-342.	27.8	146
261	Primary structure of the human Met- and Leu-enkephalin precursor and its mRNA. Nature, 1982, 295, 663-666.	27.8	688
262	Acute thyroid hormone increases noradrenergic responsiveness of rat atria in vitro. European Journal of Pharmacology, 1981, 74, 91-93.	3.5	2
263	Enkephalins, ACTH, Î \pm -MSH and Î 2 -endorphin in human pheochromocytomas. Neuropeptides, 1981, 1, 237-252.	2.2	47
264	Retinal toxicity of methylazoxymethanol acetate is developmentally specific. Developmental Brain Research, 1981, 1, 425-428.	1.7	10
265	Cell-free translation of human pheochromocytoma messenger RNA yields protein(s) containing methionine-enkephalin. Biochemical and Biophysical Research Communications, 1981, 99, 969-975.	2.1	11
266	Characterization of LRF-like immunoreactivity in the frog sympathetic ganglia: Non-identity with LRF decapeptide. Neuropeptides, 1980, 1, 29-37.	2.2	57
267	Sinefungin, a potent inhibitor of S-adenosylmethionine: Protein O-methyltransferase. Biochemical and Biophysical Research Communications, 1979, 89, 919-924.	2.1	82
268	Chemical and photooxidation of thiothixene (Navane®): Structure of the thiothixene fluorophor. Experientia, 1978, 34, 1062-1063.	1.2	10
269	The isolation and characterization of the methyl acceptor protein from adrenal chromaffin granules. Biochemical and Biophysical Research Communications, 1978, 83, 970-976.	2.1	22