Andreas Waha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12088558/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Supratentorial ependymoma in childhood: more than just RELA or YAP. Acta Neuropathologica, 2021, 141, 455-466.	7.7	37
2	Inhibition of Intercellular Cytosolic Traffic via Gap Junctions Reinforces Lomustine-Induced Toxicity in Glioblastoma Independent of MGMT Promoter Methylation Status. Pharmaceuticals, 2021, 14, 195.	3.8	7
3	Meclofenamate causes loss of cellular tethering and decoupling of functional networks in glioblastoma. Neuro-Oncology, 2021, 23, 1885-1897.	1.2	23
4	BIOM-08. DNA METHYLATION-BASED SUBGROUPING PREDICTS SURVIVAL BENEFIT FROM LOMUSTINE/TEMOZOLOMID COMBINATION THERAPY IN MGMT PROMOTOR-METHYLATED GLIOBLASTOMA. Neuro-Oncology, 2021, 23, vi11-vi11.	1.2	0
5	Sequential bortezomib and temozolomide treatment promotes immunological responses in glioblastoma patients with positive clinical outcomes: A phase 1B study. Immunity, Inflammation and Disease, 2020, 8, 342-359.	2.7	19
6	Bortezomib administered prior to temozolomide depletes MGMT, chemosensitizes glioblastoma with unmethylated MGMT promoter and prolongs animal survival. British Journal of Cancer, 2019, 121, 545-555.	6.4	49
7	Surgery for temporal glioblastoma: lobectomy outranks oncosurgical-based gross-total resection. Journal of Neuro-Oncology, 2019, 145, 143-150.	2.9	23
8	Inhibition of Gap Junctions Sensitizes Primary Glioblastoma Cells for Temozolomide. Cancers, 2019, 11, 858.	3.7	20
9	H3F3A-G34R mutant high grade neuroepithelial neoplasms with glial and dysplastic ganglion cell components. Acta Neuropathologica Communications, 2019, 7, 78.	5.2	20
10	Enzymatic Activity of HPGD in Treg Cells Suppresses Tconv Cells to Maintain Adipose Tissue Homeostasis and Prevent Metabolic Dysfunction. Immunity, 2019, 50, 1232-1248.e14.	14.3	63
11	Childhood supratentorial ependymomas with <i>YAP1â€MAMLD1</i> fusion: an entity with characteristic clinical, radiological, cytogenetic and histopathological features. Brain Pathology, 2019, 29, 205-216.	4.1	75
12	Diffuse high-grade gliomas with H3 K27M mutations carry a dismal prognosis independent of tumor location. Neuro-Oncology, 2018, 20, 123-131.	1.2	184
13	MTSS1 is epigenetically regulated in glioma cells and inhibits glioma cell motility. Translational Oncology, 2017, 10, 70-79.	3.7	6
14	New prognostic factor telomerase reverse transcriptase promotor mutation presents without MR imaging biomarkers in primary glioblastoma. Neuroradiology, 2017, 59, 1223-1231.	2.2	12
15	Dysembryoplastic Neuroepithelial Tumor of the Septum Pellucidum and the Supratentorial Midline. American Journal of Surgical Pathology, 2016, 40, 806-811.	3.7	13
16	Prognostic factors in recurrent glioblastoma patients treated with bevacizumab. Journal of Neuro-Oncology, 2016, 129, 93-100.	2.9	22
17	The earlier the better? Bevacizumab in the treatment of recurrent MGMT-non-methylated glioblastoma. Journal of Cancer Research and Clinical Oncology, 2016, 142, 1825-1829.	2.5	13
18	Targeted next generation sequencing reveals unique mutation profile of primary melanocytic tumors of the central nervous system. Journal of Neuro-Oncology, 2016, 127, 435-444.	2.9	55

ANDREAS WAHA

#	Article	IF	CITATIONS
19	Intramedullary gangliogliomas: histopathologic and molecular features of 25 cases. Human Pathology, 2016, 49, 107-113.	2.0	28
20	Assessment of Promoter Methylation Identifies PTCH as a Putative Tumor-suppressor Gene in Human CLL. Anticancer Research, 2016, 36, 4515-4520.	1.1	9
21	High frequency of H3F3A K27M mutations characterizes pediatric and adult high-grade gliomas of the spinal cord. Acta Neuropathologica, 2015, 130, 435-437.	7.7	83
22	Genetic Analysis of Diffuse Highâ€Grade Astrocytomas in Infancy Defines a Novel Molecular Entity. Brain Pathology, 2015, 25, 409-417.	4.1	32
23	TERT promoter mutations: a novel independent prognostic factor in primary glioblastomas. Neuro-Oncology, 2015, 17, 45-52.	1.2	172
24	Absence of <scp><i>TERT</i></scp> promoter mutations in primary melanocytic tumours of the central nervous system. Neuropathology and Applied Neurobiology, 2014, 40, 794-797.	3.2	19
25	<i>FGFR1</i> Mutations in Rosette-Forming Clioneuronal Tumors of the Fourth Ventricle. Journal of Neuropathology and Experimental Neurology, 2014, 73, 580-584.	1.7	76
26	FGFR1 N546K mutation in a case of papillary glioneuronal tumor (PGNT). Acta Neuropathologica, 2014, 127, 935-936.	7.7	18
27	H3.3 G34R mutations in pediatric primitive neuroectodermal tumors of central nervous system (CNS-PNET) and pediatric glioblastomas: possible diagnostic and therapeutic implications?. Journal of Neuro-Oncology, 2013, 112, 67-72.	2.9	65
28	Elevated CD3+ and CD8+ tumor-infiltrating immune cells correlate with prolonged survival in glioblastoma patients despite integrated immunosuppressive mechanisms in the tumor microenvironment and at the systemic level. Journal of Neuroimmunology, 2013, 264, 71-83.	2.3	330
29	H3F3A K27M Mutation in Pediatric CNS Tumors. American Journal of Clinical Pathology, 2013, 139, 345-349.	0.7	116
30	FLAIR-Only Progression in Bevacizumab-Treated Relapsing Glioblastoma Does Not Predict Short Survival. Oncology, 2013, 85, 191-195.	1.9	20
31	Genome-Wide DNA Copy Number Analysis of Desmoplastic Infantile Astrocytomas and Desmoplastic Infantile Gangliogliomas. Journal of Neuropathology and Experimental Neurology, 2013, 72, 807-815.	1.7	34
32	Anticancer Effects of Niclosamide in Human Glioblastoma. Clinical Cancer Research, 2013, 19, 4124-4136.	7.0	135
33	Analysis of TET Expression/Activity and 5mC Oxidation during Normal and Malignant Germ Cell Development. PLoS ONE, 2013, 8, e82881.	2.5	80
34	Combination of Hedgehog Signaling Blockage and Chemotherapy Leads to Tumor Reduction in Pancreatic Adenocarcinomas. Pancreas, 2012, 41, 222-229.	1.1	26
35	Nuclear Exclusion of TET1 Is Associated with Loss of 5-Hydroxymethylcytosine in IDH1 Wild-Type Gliomas. American Journal of Pathology, 2012, 181, 675-683.	3.8	98
36	Absence of KIAA1549-BRAF fusion in rosette-forming glioneuronal tumors of the fourth ventricle (RGNT). Journal of Neuro-Oncology, 2012, 110, 21-25.	2.9	31

ANDREAS WAHA

#	Article	IF	CITATIONS
37	RANK (TNFRSF11A) Is Epigenetically Inactivated and Induces Apoptosis in Gliomas. Neoplasia, 2012, 14, 526-IN12.	5.3	25
38	Frequent epigenetic inactivation of the chaperone <i>SGNE1</i> / <i>7B2</i> in human gliomas. International Journal of Cancer, 2012, 131, 612-622.	5.1	8
39	Repression of the genome organizer SATB1 in regulatory T cells is required for suppressive function and inhibition of effector differentiation. Nature Immunology, 2011, 12, 898-907.	14.5	179
40	Analysis of KIAA1549-BRAF fusion status in a case of rosette-forming glioneuronal tumor of the fourth ventricle (RGNT). Neuropathology, 2011, 31, 654-657.	1.2	20
41	Expression of the progenitor marker NG2/CSPG4 predicts poor survival and resistance to ionising radiation in glioblastoma. Acta Neuropathologica, 2011, 122, 495-510.	7.7	125
42	p75 ^{NTR} induces apoptosis in medulloblastoma cells. International Journal of Cancer, 2011, 128, 1804-1812.	5.1	22
43	Primary CNS lymphoma in the elderly: temozolomide therapy and MGMT status. Journal of Neuro-Oncology, 2010, 97, 389-392.	2.9	72
44	Epigenetic Downregulation of Mitogen-Activated Protein Kinase Phosphatase MKP-2 Relieves Its Growth Suppressive Activity in Glioma Cells. Cancer Research, 2010, 70, 1689-1699.	0.9	66
45	A Pyrosequencing-Based Assay for the Rapid Detection of IDH1 Mutations in Clinical Samples. Journal of Molecular Diagnostics, 2010, 12, 750-756.	2.8	53
46	A systematic search for DNA methyltransferase polymorphisms reveals a rare DNMT3L variant associated with subtelomeric hypomethylation. Human Molecular Genetics, 2009, 18, 1755-1768.	2.9	55
47	Quality control of astrocyteâ€directed Cre transgenic mice: The benefits of a direct link between loss of gene expression and reporter activation. Glia, 2009, 57, 680-692.	4.9	22
48	Prolonged and severe thrombocytopenia with pancytopenia induced by radiation-combined temozolomide therapy in a patient with newly diagnosed glioblastoma—analysis of O 6-methylguanine-DNA methyltransferase status. Journal of Neuro-Oncology, 2009, 92, 227-232.	2.9	18
49	Comparison of automated silver enhanced in situ hybridization and fluorescence in situ hybridization for evaluation of epidermal growth factor receptor status in human glioblastomas. Modern Pathology, 2009, 22, 1263-1271.	5.5	13
50	MethMarker: user-friendly design and optimization of gene-specific DNA methylation assays. Genome Biology, 2009, 10, R105.	9.6	25
51	Aberrant Methylation and Reduced Expression of LHX9 in Malignant Gliomas of Childhood. Neoplasia, 2009, 11, 700-711.	5.3	36
52	Runx2 is expressed in human glioma cells and mediates the expression of galectinâ€3. Journal of Neuroscience Research, 2008, 86, 2450-2461.	2.9	56
53	Optimization of Quantitative MGMT Promoter Methylation Analysis Using Pyrosequencing and Combined Bisulfite Restriction Analysis. Journal of Molecular Diagnostics, 2007, 9, 368-381.	2.8	194
54	Mutations of the Wnt antagonistAXIN2(Conductin) result in TCF-dependent transcription in medulloblastomas. International Journal of Cancer, 2007, 121, 284-291.	5.1	60

ANDREAS WAHA

#	Article	IF	CITATIONS
55	A Rapid and Sensitive Protocol for Competitive Reverse Transcriptase (cRT) PCR Analysis of Cellular Genes. Brain Pathology, 2006, 8, 13-18.	4.1	42
56	Elevated Expression of Wnt Antagonists Is a Common Event in Hepatoblastomas. Clinical Cancer Research, 2005, 11, 4295-4304.	7.0	145
57	Epigenetic Silencing of the Protocadherin Family Member PCDH-Î ³ -All in Astrocytomas. Neoplasia, 2005, 7, 193-199.	5.3	102
58	Mutations and elevated transcriptional activity ofconductin (AXIN2) in hepatoblastomas. Journal of Pathology, 2004, 204, 546-554.	4.5	52
59	Methylation Profiling Identifies Epigenetic Markers for High-grade Gliomas. Cancer Genomics and Proteomics, 2004, 1, 209-214.	2.0	3
60	Expression of galectin-3 in neuronally differentiating PC12 cells is regulated both via Ras/MAPK-dependent and -independent signalling pathways. Journal of Neurochemistry, 2003, 87, 1112-1124.	3.9	25
61	Epigenetic Silencing of the <i>HIC-1</i> Gene in Human Medulloblastomas. Journal of Neuropathology and Experimental Neurology, 2003, 62, 1192-1201.	1.7	57
62	Promoter-specific transcription of the IGF2 gene: a novel rapid, non-radioactive and highly sensitive protocol for mRNA analysis. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2001, 439, 803-807.	2.8	15
63	Comprehensive Allelotype and Genetic Analysis of 466 Human Nervous System Tumors. Journal of Neuropathology and Experimental Neurology, 2000, 59, 544-558.	1.7	137
64	Temporal Lobe Epilepsy Associated Up-Regulation of Metabotropic Glutamate Receptors: Correlated Changes in mGluR1 mRNA and Protein Expression in Experimental Animals and Human Patients. Journal of Neuropathology and Experimental Neurology, 2000, 59, 1-10.	1.7	94
65	p57KIP2 Is Not Mutated in Hepatoblastoma but Shows Increased Transcriptional Activity in a Comparative Analysis of the Three Imprinted Genes p57KIP2, IGF2, and H19. American Journal of Pathology, 2000, 157, 1393-1403.	3.8	50
66	Expression of theATM gene is significantly reduced in sporadic breast carcinomas. , 1998, 78, 306-309.		37
67	Association of EGFR Gene Amplification and CDKN2 (p16/MTS1) Gene Deletion in Glioblastoma Multiforme. Brain Pathology, 1997, 7, 871-875.	4.1	128
68	A Polymerase Chain Reaction-based Assay for the Rapid Detection of Gene Amplification in Human Tumors. Diagnostic Molecular Pathology, 1996, 5, 147-150.	2.1	27
69	Variable Imprinting of H19 and IGF2 in Fetal Cerebellum and Medulloblastoma. Journal of Neuropathology and Experimental Neurology, 1996, 55, 1270-1276.	1.7	30
70	Lack of prognostic relevance of alterations in the epidermal growth factor receptor—transforming growth factor-î± pathway in human astrocytic gliomas. Journal of Neurosurgery, 1996, 85, 634-641.	1.6	69
71	Amplification of the cyclin-dependent kinase 4 (CDK4) gene is associated with high cdk4 protein levels in glioblastoma multiforme. Acta Neuropathologica, 1996, 92, 70-74.	7.7	71
72	Altered splicing leads to reduced activation of CPEB3 in high-grade gliomas. Oncotarget, 0, 7, 41898-41912.	1.8	7