
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1208761/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesopore-encaged V-Mn oxides: Progressive insertion approach triggering reconstructed active sites to enhance catalytic oxidative desulfuration. Chinese Journal of Chemical Engineering, 2022, 45, 182-193.	3.5	3
2	Construction of a novel Ag/Ag3PO4/MIL-68(In)-NH2 plasmonic heterojunction photocatalyst for high-efficiency photocatalysis. Journal of Materials Science and Technology, 2022, 101, 37-48.	10.7	39
3	Micro-morphology highly uniform mesoporous Co3O4 spheres: shape-controlled fabrication by a salt-assisted template-free method and enhanced catalytic performance of styrene epoxidation. Journal of Materials Science, 2022, 57, 11546-11562.	3.7	1
4	Neighboring Cu toward Mn site in confined mesopore to trigger strong interplay for boosting catalytic epoxidation of styrene. Applied Surface Science, 2021, 537, 148100.	6.1	19
5	Engineering Z-system hybrids of 0D/2D F-TiO ₂ quantum dots/g-C ₃ N ₄ heterostructures through chemical bonds with enhanced visible-light photocatalytic performance. New Journal of Chemistry, 2021, 45, 3067-3078.	2.8	12
6	Probing the formation and optical properties of Ti3+–TiO2 with (001) exposed crystal facet by ethanol-assisted fluorination. New Journal of Chemistry, 2021, 45, 12453-12463.	2.8	5
7	Density Functional Theory Study of Small Au Nanoparticles Anchored on the Inner Surface of Mesoporous Co ₃ O ₄ for the Catalytic Reduction of 4-Nitrophenol. ACS Applied Nano Materials, 2021, 4, 4763-4773.	5.0	9
8	Metal-organic framework-derived rodlike AgCl/Ag/In2O3: A plasmonic Z-scheme visible light photocatalyst. Chemical Engineering Journal, 2021, 415, 129010.	12.7	38
9	Engineering 2D compressed layered g-C3N4 nanosheets by the intercalation of BiVO4-Bi2WO6 composites for boosting photocatalytic activities. Applied Surface Science, 2021, 557, 149796.	6.1	27
10	Engineering carbon-defects on ultrathin g-C3N4 allows one-pot output and dramatically boosts photoredox catalytic activity. Applied Catalysis B: Environmental, 2021, 295, 120272.	20.2	129
11	Construction of 3D hierarchical microarchitectures of Z-scheme UiO-66-(COOH)2/ZnIn2S4 hybrid decorated with non-noble MoS2 cocatalyst: A highly efficient photocatalyst for hydrogen evolution and Cr(VI) reduction. Chemical Engineering Journal, 2020, 384, 123352.	12.7	137
12	Photocatalytic producing dihydroxybenzenes from phenol enabled by gathering oxygen vacancies in ultrathin porous ZnO nanosheets. Applied Surface Science, 2020, 505, 144580.	6.1	30
13	Synergy Derived from Bimetal Coâ^'Cu in Phosphate to Enables Ultrafast Catalytic Hydrogenated Activity in Nitrophenol Reduction. ChemistrySelect, 2020, 5, 3405-3412.	1.5	6
14	Effects of synergetic effect between Co and Î ³ -Fe2O3 in confined silica matrix of MCM-41 on the formation of free radicals for the advanced oxidation technology. Applied Surface Science, 2020, 527, 146853.	6.1	14
15	Enabling synchronous activation of inner-core and mesoporous outer-shell of monodispersed Fe3O4@SiO2 by in-situ implanted MnO to synergistically deliver enhanced catalytic activity. Journal of Alloys and Compounds, 2020, 842, 155817.	5.5	17
16	High promoting of selective oxidation of ethylbenzene by Mn-ZSM-5 synthesized without organic template and calcination. Research on Chemical Intermediates, 2020, 46, 2817-2832.	2.7	15
17	Record-high catalytic hydrogenated activity in nitroarenes reduction derived from in-situ nascent active metals enabled by constructing bimetallic phosphate. Molecular Catalysis, 2020, 486, 110873.	2.0	6
18	Preparation of ZSM-5 containing vanadium and BrÃ,nsted acid sites with high promoting of styrene oxidation using 30% H2O2. Chinese Journal of Chemical Engineering, 2020, 28, 1302-1310.	3.5	15

#	Article	IF	CITATIONS
19	A Metalâ€Free Donor–Acceptor Covalent Organic Framework Photocatalyst for Visibleâ€Lightâ€Driven Reduction of CO ₂ with H ₂ O. ChemSusChem, 2020, 13, 1725-1729.	6.8	177
20	Exposed ternary metal active sites on mesoporous channels: A promising catalyst for low-temperature selective catalytic oxidization of phenol with H2O2. Molecular Catalysis, 2019, 478, 110568.	2.0	8
21	Bimetallic metal–organic frameworks-derived mesoporous CdxZn1â^'xS polyhedrons for enhanced photocatalytic hydrogen evolution. Journal of Materials Research, 2019, 34, 1773-1784.	2.6	20
22	Acid-redox bifunctional Fe/Al-AMS catalyst: Simultaneously oriented introducing Fe2O3 in the channels and Al in the framework of AMS and its enhanced catalytic performance. Applied Catalysis A: General, 2019, 575, 159-169.	4.3	13
23	Nanosheet-like Ni-based metasilicate towards the regulated catalytic activity in styrene oxidation via introducing heteroatom metal. Applied Surface Science, 2019, 471, 822-834.	6.1	30
24	Defects remodeling of g-C3N4 nanosheets by fluorine-containing solvothermal treatment to enhance their photocatalytic activities. Applied Surface Science, 2019, 474, 194-202.	6.1	42
25	Stabilized Ponyâ€&ized uFe ₂ O ₄ /Carbon Nitride Porous Composites with Boosting Fentonâ€like Oxidation Activity. ChemistrySelect, 2018, 3, 4207-4216.	1.5	9
26	Silver-Incorporated Mussel-Inspired Polydopamine Coatings on Mesoporous Silica as an Efficient Nanocatalyst and Antimicrobial Agent. ACS Applied Materials & Interfaces, 2018, 10, 1792-1801.	8.0	116
27	Regeneration of Arrayed Gold Microelectrodes Equipped for a Real-Time Cell Analyzer. Journal of Visualized Experiments, 2018, , .	0.3	6
28	Enriched Ag Nanospecies Interspersed Nanoporous Siliceous Antibacterial Agent. ChemistrySelect, 2018, 3, 10255-10258.	1.5	6
29	<i>In situ</i> intercalation of Au nanoparticles and magnetic γ-Fe ₂ O ₃ in the walls of MCM-41 with abundant void defects for highly efficient reduction of 4-nitrophenol and organic dyes. Dalton Transactions, 2018, 47, 16862-16875.	3.3	20
30	Beltâ€Like Cobalt Phosphate Tetrahydrate as the Nonâ€Noble Metal Catalyst with Enhanced Catalytic Reduction Activity. ChemistrySelect, 2018, 3, 6924-6934.	1.5	19
31	Oriented Decoration in Metal-Functionalized Ordered Mesoporous Silicas and Their Catalytic Applications in the Oxidation of Aromatic Compounds. Catalysts, 2018, 8, 80.	3.5	9
32	In situ embedding of ultra-fine nickel oxide nanoparticles in HMS with enhanced catalytic activities of styrene epoxidation. Microporous and Mesoporous Materials, 2017, 238, 69-77.	4.4	39
33	Oriented surface decoration of (Co-Mn) bimetal oxides on nanospherical porous silica and synergetic effect in biomass-derived 5-hydroxymethylfurfural oxidation. Molecular Catalysis, 2017, 435, 144-155.	2.0	34
34	Facilely self-reduced generation of Ag nanowires in the confined reductive siliceous nanopores and its catalytic reduction property. Journal of Alloys and Compounds, 2017, 719, 30-41.	5.5	12
35	Thermal-induced surface defective Co/Fe–Co planar hybrid composite nanosheet with enhanced catalytic activity in the Fenton-like reaction. Materials Chemistry Frontiers, 2017, 1, 2065-2077.	5.9	17
36	A Facile Oneâ€Step Synthesis of Feâ€Doped gâ€C ₃ N ₄ Nanosheets and Their Improved Visibleâ€Light Photocatalytic Performance. ChemCatChem, 2017, 9, 1708-1715.	3.7	278

#	Article	IF	CITATIONS
37	Micropore-enriched CuO-based silica catalyst directly prepared by anionic template-induced method and its boosting catalytic activity in olefins epoxidation. Microporous and Mesoporous Materials, 2017, 246, 215-224.	4.4	26
38	In situ incorporation of well-dispersed Cu–Fe oxides in the mesochannels of AMS and their utilization as catalysts towards the Fenton-like degradation of methylene blue. Journal of Materials Science, 2017, 52, 1432-1445.	3.7	25
39	Templateâ€Free Synthesis of Highâ€Content Vanadiumâ€Doped ZSMâ€5 with Enhanced Catalytic Performance. ChemistrySelect, 2017, 2, 11513-11520.	1.5	5
40	The structure-property relationship of oxovanadium(IV) complexes in the wall framework of PMOs and their catalytic applications. Applied Surface Science, 2017, 397, 183-191.	6.1	7
41	Raspberry-Like Bismuth Oxychloride on Mesoporous Siliceous Support for Sensitive Electrochemical Stripping Analysis of Cadmium. Molecules, 2017, 22, 797.	3.8	9
42	Aminosilane decorated carbon template-induced in situ encapsulation of multiple-Ag-cores inside mesoporous hollow silica. RSC Advances, 2016, 6, 30852-30861.	3.6	8
43	A metal-assisted templating route (S ⁰ M ⁺ I ^{â^'}) for fabricating thin-layer CoO covered on the channel of nanospherical-HMS with improved catalytic properties. Dalton Transactions, 2016, 45, 6371-6382.	3.3	21
44	An iron-based micropore-enriched silica catalyst: in situ confining of Fe ₂ O ₃ in the mesopores and its improved catalytic properties. RSC Advances, 2016, 6, 76064-76074.	3.6	15
45	A Facile Method for the Direct Introduction of FeO _x in Mesoporous AMS Through A Templating Route (S ^{â^'} [MN] ⁺ I ^{â^'}) and Its Catalytic Application. ChemistrySelect, 2016, 1, 1305-1313.	1.5	3
46	Template-induced in situ dispersion of enhanced basic-sites on sponge-like mesoporous silica and its improved catalytic property. RSC Advances, 2016, 6, 91968-91980.	3.6	7
47	Degradation of phenol in industrial wastewater over the F–Fe/TiO2 photocatalysts under visible light illumination. Chinese Journal of Chemical Engineering, 2016, 24, 1712-1718.	3.5	27
48	Oneâ€Pot Synthesis of Ironâ€Containing Nanoreactors with Controllable Catalytic Activity Based on Multichannel Mesoporous Silica. ChemCatChem, 2015, 7, 3855-3864.	3.7	14
49	Threeâ€Dimensionally Controllable Synthesis of Multichannel Silica Nanotubes and Their Application as Dual Drug Carriers. ChemPlusChem, 2015, 80, 1615-1623.	2.8	3
50	Improved visible light photocatalytic activity of fluorine and nitrogen co-doped TiO2 with tunable nanoparticle size. Applied Surface Science, 2015, 332, 573-580.	6.1	57
51	Direct templating assembly route for the preparation of highly-dispersed vanadia species encapsulated in mesoporous MCM-41 channel. RSC Advances, 2015, 5, 72099-72106.	3.6	23
52	Coordination of manganese porphyrins on amino-functionalized MCM-41 for heterogeneous catalysis of naphthalene hydroxylation. Chinese Journal of Catalysis, 2015, 36, 1035-1041.	14.0	32
53	Spherical V-Fe-MCM-48: The Synthesis, Characterization and Hydrothermal Stability. Materials, 2015, 8, 1752-1765.	2.9	24
54	Spherical V-MCM-48: the synthesis, characterization and catalytic performance in styrene oxidation. RSC Advances, 2014, 4, 50832-50839.	3.6	27

#	Article	IF	CITATIONS
55	Synthesis, Characterization and Catalytic Activity of Nano-Spherical MCM-41 Modified with Vanadium. Journal of Nanoscience and Nanotechnology, 2014, 14, 7300-7306.	0.9	2
56	Self-assembly of the chaperonin GroEL nanocage induced at submicellar detergent. Scientific Reports, 2014, 4, 5614.	3.3	6
57	Improvement on the mesostructural ordering and catalytic activity of Co-MCM-41 with ascorbic acid as auxiliary. Materials Letters, 2013, 100, 159-162.	2.6	11
58	Synthesis of F-TiO ₂ Nanosheets and its Photocatalytic Oxidation of Benzene to Phenol. Advanced Materials Research, 2013, 750-752, 1160-1163.	0.3	4
59	Influences of Pore Sizes on the Catalytic Activity of Fe-MCM-41 in Hydroxylation of Phenol. Asian Journal of Chemistry, 2013, 25, 9087-9091.	0.3	2
60	The Complete Control for the Nanosize of Spherical MCM-41. Journal of Nanoscience and Nanotechnology, 2012, 12, 7239-7249.	0.9	28
61	Synthesis, characterization and catalytic activity of binary metallic titanium and iron containing mesoporous silica. Microporous and Mesoporous Materials, 2012, 162, 51-59.	4.4	31
62	The states of vanadium species in V-SBA-15 synthesized under different pH values. Microporous and Mesoporous Materials, 2008, 110, 508-516.	4.4	79
63	Synthesis, characterization and catalytic performance for phenol hydroxylation of Fe-MCM41 with high iron content. Microporous and Mesoporous Materials, 2008, 113, 163-170.	4.4	77
64	Synthesis, characterization of bimetallic Ce–Fe-SBA-15 and its catalytic performance in the phenol hydroxylation. Microporous and Mesoporous Materials, 2008, 113, 393-401.	4.4	50
65	Effect of Promoters on the Catalytic Activity of MCM-41 with High Copper Content in Benzene Hydroxylation. Chinese Journal of Catalysis, 2008, 29, 385-390.	14.0	16
66	Synthesis, characterization of bimetallic Sn-Zn-MCM41 and its catalytic performance in the hydroxylation of phenol. Journal of Porous Materials, 2006, 13, 341-346.	2.6	16
67	Synthesis of ordered hexagonal porous tin-doped zirconium oxides with a high surface area. Microporous and Mesoporous Materials, 2005, 77, 241-243.	4.4	11
68	Synthesis and characterization of Cu–Ti–MCM41. Microporous and Mesoporous Materials, 2005, 86, 191-197.	4.4	35
69	Synthesis and Characterization of Novel Super Microporous Tin-doped Zirconium Oxide. Chinese Journal of Chemistry, 2005, 23, 1584-1588.	4.9	5