
## Seung Yol Jeong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12086270/publications.pdf Version: 2024-02-01



SELING YOU LEONG

| #  | Article                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Orientation effect on the rheology of graphene oxide dispersions in isotropic phase, ordered isotropic biphase, and discotic phase. Journal of Rheology, 2021, 65, 791-806.              | 2.6  | 10        |
| 2  | Tailored and highly efficient oxidation of various-sized graphite by kneading for high-quality graphene<br>nanosheets. Carbon, 2020, 157, 663-669.                                       | 10.3 | 10        |
| 3  | Heavily nitrogen doped chemically exfoliated graphene by flash heating. Carbon, 2019, 144, 675-683.                                                                                      | 10.3 | 13        |
| 4  | Chemically Exfoliated Graphene Nanosheets for Flexible Electrode Applications. , 2018, , .                                                                                               |      | 1         |
| 5  | Fabrication of high-quality or highly porous graphene sheets from exfoliated graphene oxide via reactions in alkaline solutions. Carbon, 2018, 138, 219-226.                             | 10.3 | 26        |
| 6  | Lateral diffusion of graphene oxides in water and the size effect on the orientation of dispersions and electrical conductivity. Carbon, 2017, 125, 280-288.                             | 10.3 | 19        |
| 7  | Ultrafast Heating for Intrinsic Properties of Atomically Thin Two-Dimensional Materials on Plastic<br>Substrates. ACS Applied Materials & Interfaces, 2016, 8, 31222-31230.              | 8.0  | 7         |
| 8  | Modulating Electronic Properties of Monolayer MoS <sub>2</sub> <i>via</i> Electron-Withdrawing Functional Groups of Graphene Oxide. ACS Nano, 2016, 10, 10446-10453.                     | 14.6 | 41        |
| 9  | Chemically doped three-dimensional porous graphene monoliths for high-performance flexible field emitters. Nanoscale, 2015, 7, 5495-5502.                                                | 5.6  | 11        |
| 10 | Monolithic Graphene Trees as Anode Material for Lithium Ion Batteries with High Câ€Rates. Small, 2015, 11, 2774-2781.                                                                    | 10.0 | 19        |
| 11 | Suppressing spontaneous polarization of p-GaN by graphene oxide passivation: Augmented light output of GaN UV-LED. Scientific Reports, 2015, 5, 7778.                                    | 3.3  | 27        |
| 12 | Enhanced response and sensitivity of self-corrugated graphene sensors with anisotropic charge distribution. Scientific Reports, 2015, 5, 11216.                                          | 3.3  | 22        |
| 13 | Sensitive photo-thermal response of graphene oxide for mid-infrared detection. Nanoscale, 2015, 7,<br>15695-15700.                                                                       | 5.6  | 57        |
| 14 | Quadruple Hydrogen Bonded Nanocarbon Networks for High Performance Dispersant-Free<br>Conducting Pastes. Materials Research Society Symposia Proceedings, 2014, 1700, 91-95.             | 0.1  | 0         |
| 15 | Oneâ€Step Transfer and Integration of Multifunctionality in CVD Graphene by<br>TiO <sub>2</sub> /Graphene Oxide Hybrid Layer. Small, 2014, 10, 2057-2066.                                | 10.0 | 15        |
| 16 | Improved transfer of chemical-vapor-deposited graphene through modification of intermolecular interactions and solubility of poly(methylmethacrylate) layers. Carbon, 2014, 66, 612-618. | 10.3 | 49        |
| 17 | Extremely Efficient Liquid Exfoliation and Dispersion of Layered Materials by Unusual Acoustic<br>Cavitation. Scientific Reports, 2014, 4, 5133.                                         | 3.3  | 101       |
| 18 | Dispersant-free conducting pastes for flexible and printed nanocarbon electrodes. Nature<br>Communications, 2013, 4, 2491.                                                               | 12.8 | 65        |

SEUNG YOL JEONG

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Selfâ€Organized Graphene Nanosheets with Corrugated, Ordered Tip Structures for Highâ€Performance<br>Flexible Field Emission. Small, 2013, 9, 2182-2188.                                               | 10.0 | 17        |
| 20 | Size sorting of chemically modified graphene nanoplatelets. Carbon Letters, 2013, 14, 89-93.                                                                                                           | 5.9  | 9         |
| 21 | Self-passivation of transparent single-walled carbon nanotube films on plastic substrates by<br>microwave-induced rapid nanowelding. Applied Physics Letters, 2012, 100, .                             | 3.3  | 19        |
| 22 | Graphene oxide as a multi-functional p-dopant of transparent single-walled carbon nanotube films for optoelectronic devices. Nanoscale, 2012, 4, 7735.                                                 | 5.6  | 37        |
| 23 | Arrays of vertically aligned tubular-structured graphene for flexible field emitters. Journal of<br>Materials Chemistry, 2012, 22, 11277.                                                              | 6.7  | 19        |
| 24 | Spontaneous reduction and dispersion of graphene nano-platelets with in situ synthesized hydrazine assisted by hexamethyldisilazane. Journal of Materials Chemistry, 2012, 22, 20477.                  | 6.7  | 9         |
| 25 | Highly efficient polymer light-emitting diodes using graphene oxide-modified flexible single-walled carbon nanotube electrodes. Journal of Materials Chemistry, 2012, 22, 21481.                       | 6.7  | 21        |
| 26 | Flexible Field Emission from Thermally Welded Chemically Doped Graphene Thin Films. Small, 2012, 8, 272-280.                                                                                           | 10.0 | 30        |
| 27 | Highly Concentrated and Conductive Reduced Graphene Oxide Nanosheets by Monovalent<br>Cation– <i>π</i> Interaction: Toward Printed Electronics. Advanced Functional Materials, 2012, 22,<br>3307-3314. | 14.9 | 74        |
| 28 | High-Performance Transparent Conductive Films Using Rheologically Derived Reduced Graphene<br>Oxide. ACS Nano, 2011, 5, 870-878.                                                                       | 14.6 | 84        |
| 29 | Chemical Strain-Relaxation of Single-Walled Carbon Nanotubes on Plastic Substrates for Enhanced Conductivity. Journal of Physical Chemistry C, 2011, 115, 22251-22256.                                 | 3.1  | 7         |
| 30 | Transparent carbon nanotube patterns templated by inkjet-printed graphene oxide nanosheets. RSC<br>Advances, 2011, 1, 44.                                                                              | 3.6  | 14        |
| 31 | Enhanced Electrical Properties of Reduced Graphene Oxide Multilayer Films by <i>In-Situ</i> Insertion of a TiO <sub>2</sub> Layer. ACS Nano, 2011, 5, 8884-8891.                                       | 14.6 | 55        |
| 32 | Titania-Assisted Dispersion of Carboxylated Single-Walled Carbon Nanotubes in a ZnO Sol for<br>Transparent Conducting Hybrid Films. ACS Applied Materials & Interfaces, 2011, 3, 2671-2676.            | 8.0  | 11        |
| 33 | Allâ€Carbon Nanotubeâ€Based Flexible Fieldâ€Emission Devices: From Cathode to Anode. Advanced<br>Functional Materials, 2011, 21, 1526-1532.                                                            | 14.9 | 75        |
| 34 | Modulating Conductivity, Environmental Stability of Transparent Conducting Nanotube Films on Flexible Substrates by Interfacial Engineering. ACS Nano, 2010, 4, 4551-4558.                             | 14.6 | 27        |
| 35 | Molecular Engineering to Minimize the Sheet Resistance Increase of Single-Walled Carbon<br>Nanotube/Binder Hybrid Conductive Thin Films. Journal of Physical Chemistry C, 2009, 113, 16915-16920.      | 3.1  | 12        |
| 36 | Bias-induced doping engineering with ionic adsorbates on single-walled carbon nanotube thin film<br>transistors. New Journal of Physics, 2008, 10, 113013.                                             | 2.9  | 3         |

SEUNG YOL JEONG

| #  | Article                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Photocurrent of CdSe nanocrystals on single-walled carbon nanotube-field effect transistor. Applied Physics Letters, 2008, 92, .                                                 | 3.3  | 22        |
| 38 | Efficient synthesis of individual single-walled carbon nanotube by water-based catalyst with poly(vinylpyrrolidone). Journal of Nanoscience and Nanotechnology, 2008, 8, 329-34. | 0.9  | 1         |
| 39 | Schottky barrier engineering in carbon nanotube with various metal electrodes. , 2007, , .                                                                                       |      | 3         |
| 40 | Chiralityâ€specific transport phenomena of isolated singleâ€walled carbon nanotube. Physica Status<br>Solidi (B): Basic Research, 2007, 244, 4204-4211.                          | 1.5  | 2         |
| 41 | FABRICATION OF GAS SENSOR USING SINGLE-WALLED CARBON NANOTUBES DISPERSED IN DICHLOROETHANE. Nano, 2006, 01, 235-241.                                                             | 1.0  | 6         |
| 42 | Characterization of thin multi-walled carbon nanotubes synthesized by catalytic chemical vapor deposition. Chemical Physics Letters, 2005, 413, 135-141.                         | 2.6  | 63        |
| 43 | High-Yield Catalytic Synthesis of Thin Multiwalled Carbon Nanotubes ChemInform, 2005, 36, no.                                                                                    | 0.0  | 0         |
| 44 | A Diameter-Selective Attack of Metallic Carbon Nanotubes by Nitronium Ions. Journal of the American<br>Chemical Society, 2005, 127, 5196-5203.                                   | 13.7 | 145       |
| 45 | High-Yield Catalytic Synthesis of Thin Multiwalled Carbon Nanotubes. Journal of Physical Chemistry B, 2004, 108, 17695-17698.                                                    | 2.6  | 71        |
| 46 | Dual-catalyst growth of vertically aligned carbon nanotubes at low temperature in thermal chemical vapor deposition. Chemical Physics Letters, 2002, 361, 189-195.               | 2.6  | 38        |