Jin Kim Montclare

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12083111/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protein based biomaterials for therapeutic and diagnostic applications. Progress in Biomedical Engineering, 2022, 4, 012003.	4.9	7
2	From concept to reality: the use and impact of 3D prints as academic tools for high school biology education. Journal of Biological Education, 2022, 56, 528-539.	1.5	4
3	Injectable recombinant block polymer gel for sustained delivery of therapeutic protein in post traumatic osteoarthritis. Biomaterials, 2022, 281, 121370.	11.4	19
4	Engineered protein–iron oxide hybrid biomaterial for MRI-traceable drug encapsulation. Molecular Systems Design and Engineering, 2022, 7, 915-932.	3.4	4
5	Effect of Divalent Metal Cations on the Conformation, Elastic Behavior, and Controlled Release of a Photocrosslinked Protein Engineered Hydrogel. ACS Applied Bio Materials, 2021, 4, 3587-3597.	4.6	5
6	Free-Standing Photocrosslinked Protein Polymer Hydrogels for Sustained Drug Release. Biomacromolecules, 2021, 22, 1509-1522.	5.4	7
7	Self-assembly of stimuli-responsive coiled-coil fibrous hydrogels. Soft Matter, 2021, 17, 6470-6476.	2.7	18
8	Enhancing organophosphate hydrolase efficacy via protein engineering and immobilization strategies. Annals of the New York Academy of Sciences, 2020, 1480, 54-72.	3.8	11
9	Recent trends in peptide and protein-based hydrogels. Current Opinion in Structural Biology, 2020, 63, 97-105.	5.7	60
10	Thermoresponsive Protein-Engineered Coiled-Coil Hydrogel for Sustained Small Molecule Release. Biomacromolecules, 2019, 20, 3340-3351.	5.4	45
11	A â€~KAHOOT!' Approach: The Effectiveness of Game-Based Learning for an Advanced Placement Biology Class. Simulation and Gaming, 2019, 50, 832-847.	1.9	29
12	Protein‣ngineered Functional Materials. Advanced Healthcare Materials, 2019, 8, e1801374.	7.6	48
13	Protein-Engineered Nanoscale Micelles for Dynamic ¹⁹ F Magnetic Resonance and Therapeutic Drug Delivery. ACS Nano, 2019, 13, 2969-2985.	14.6	39
14	Protein biomaterials for theranostic applications. Molecular Systems Design and Engineering, 2019, 4, 1074-1094.	3.4	4
15	Protein Engineered Triblock Polymers Composed of Two SADs: Enhanced Mechanical Properties and Binding Abilities. Biomacromolecules, 2018, 19, 1552-1561.	5.4	26
16	Design and Characterization of Fibers and Bionanocomposites Using the Coiled-Coil Domain of Cartilage Oligomeric Matrix Protein. Methods in Molecular Biology, 2018, 1798, 239-263.	0.9	3
17	Protein based therapeutic delivery agents: Contemporary developments and challenges. Biomaterials, 2017, 134, 91-116.	11.4	75
18	Impact of phenylalanines outside the dimer interface on phosphotriesterase stability and function. Molecular BioSystems, 2017, 13, 2092-2106.	2.9	4

JIN KIM MONTCLARE

#	Article	IF	CITATIONS
19	Efficient Dual siRNA and Drug Delivery Using Engineered Lipoproteoplexes. Biomacromolecules, 2017, 18, 2688-2698.	5.4	14
20	Natural Composite Systems for Bioinspired Materials. Advances in Experimental Medicine and Biology, 2016, 940, 143-166.	1.6	7
21	Integrating Technology in STEM Education. Journal of Technology and Science Education, 2015, 5, .	1.2	7
22	Exploring the potential of engineered coiled-coil protein microfibers in drug delivery. Therapeutic Delivery, 2015, 6, 643-646.	2.2	7
23	Tunable Conformation-Dependent Engineered Protein·Gold Nanoparticle Nanocomposites. Biomacromolecules, 2015, 16, 1706-1713.	5.4	15
24	Engineered Coiled-Coil Protein Microfibers. Biomacromolecules, 2014, 15, 3503-3510.	5.4	70
25	Improved Stability and Halfâ€Life of Fluorinated Phosphotriesterase Using Rosetta. ChemBioChem, 2014, 15, 1761-1764.	2.6	16
26	Bionanocomposites: Differential Effects of Cellulose Nanocrystals on Protein Diblock Copolymers. Biomacromolecules, 2013, 14, 4360-4367.	5.4	39
27	Development and Implementation of High School Chemistry Modules Using Touch-Screen Technologies. Journal of Chemical Education, 2012, 89, 1012-1018.	2.3	22
28	Modulating Supramolecular Assemblies and Mechanical Properties of Engineered Protein Materials by Fluorinated Amino Acids. Biomacromolecules, 2012, 13, 2273-2278.	5.4	28
29	Identification and comparison of cutinases for synthetic polyester degradation. Applied Microbiology and Biotechnology, 2012, 93, 229-240.	3.6	95
30	Modulating substrate specificity of histone acetyltransferase with unnatural amino acids. Molecular BioSystems, 2011, 7, 3050.	2.9	12
31	Artificial Protein Block Polymer Libraries Bearing Two SADs: Effects of Elastin Domain Repeats. Biomacromolecules, 2011, 12, 4240-4246.	5.4	34
32	Enhanced Refoldability and Thermoactivity of Fluorinated Phosphotriesterase. ChemBioChem, 2011, 12, 1845-1848.	2.6	45
33	Bioinspired Artificial Protein Materials: Self-Assembly and Order from Nano to Macroscale. Materials Research Society Symposia Proceedings, 2011, 1301, 155.	0.1	0
34	Incorporation of unnatural amino acids for synthetic biology. Molecular BioSystems, 2010, 6, 65-80.	2.9	72
35	Supramolecular assembly and small molecule recognition by genetically engineered protein block polymers composed of two SADs. Molecular BioSystems, 2010, 6, 1662.	2.9	33
36	Biosynthesis and Stability of Coiledâ€Coil Peptides Containing (2 <i>S</i> ,4 <i>R</i>)â€5,5,5â€Trifluoroleucine and (2 <i>S</i> ,4 <i>S</i>)â€5,5,5â€Trifluoroleucine. ChemBioChem, 2009, 10, 84-86.	2.6	67

JIN KIM MONTCLARE

#	Article	IF	CITATIONS
37	Positional effects of monofluorinated phenylalanines on histone acetyltransferase stability and activity. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5449-5451.	2.2	24
38	N-Terminal Aliphatic Residues Dictate the Structure, Stability, Assembly, and Small Molecule Binding of the Coiled-Coil Region of Cartilage Oligomeric Matrix Protein. Biochemistry, 2009, 48, 8559-8567.	2.5	68
39	Structural and Functional Studies of <i>Aspergillus oryzae</i> Cutinase: Enhanced Thermostability and Hydrolytic Activity of Synthetic Ester and Polyester Degradation. Journal of the American Chemical Society, 2009, 131, 15711-15716.	13.7	112
40	Assembly of bioinspired helical protein fibers. Polymers for Advanced Technologies, 2008, 19, 454-468.	3.2	28
41	Fluorinated chloramphenicol acetyltransferase thermostability and activity profile: Improved thermostability by a single-isoleucine mutant. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5907-5911.	2.2	13
42	Influence of global fluorination on chloramphenicol acetyltransferase activity and stability. Biotechnology and Bioengineering, 2006, 94, 921-930.	3.3	32
43	Evolving Proteins of Novel Composition. Angewandte Chemie - International Edition, 2006, 45, 4518-4521.	13.8	65
44	Miniature Homeodomains:Â High Specificity without an N-Terminal Arm. Journal of the American Chemical Society, 2003, 125, 3416-3417.	13.7	64