
Andrew C Chan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1208235/publications.pdf Version: 2024-02-01

ANDREW C CHAN

#	Article	IF	CITATIONS
1	B cell-mediated regulatory mechanisms control tumor-promoting intestinal inflammation. Cell Reports, 2022, 40, 111051.	6.4	7
2	Autoimmunity linked protein phosphatase PTPN22 as a target for cancer immunotherapy. , 2020, 8, e001439.		30
3	30 Years of Biotherapeutics Development—What Have We Learned?. Annual Review of Immunology, 2020, 38, 249-287.	21.8	11
4	Protein tyrosine phosphatase non-receptor type 22 modulates colitis in a microbiota-dependent manner. Journal of Clinical Investigation, 2019, 129, 2527-2541.	8.2	15
5	Ocrelizumab: A New Therapeutic Paradigm for Multiple Sclerosis. Biochemistry, 2018, 57, 474-476.	2.5	2
6	Surface receptor Toso controls B cell–mediated regulation of T cell immunity. Journal of Clinical Investigation, 2018, 128, 1820-1836.	8.2	18
7	PTPN22 regulates NLRP3-mediated IL1B secretion in an autophagy-dependent manner. Autophagy, 2017, 13, 1590-1601.	9.1	90
8	Regulation of T Cell Receptor Signaling by DENND1B in T H 2 Cells and Allergic Disease. Cell, 2016, 164, 141-155.	28.9	53
9	NLRP3 tyrosine phosphorylation is controlled by protein tyrosine phosphatase PTPN22. Journal of Clinical Investigation, 2016, 126, 1783-1800.	8.2	171
10	Autoimmunity-associated protein tyrosine phosphatase PEP negatively regulates IFN-α receptor signaling. Journal of Experimental Medicine, 2015, 212, 1081-1093.	8.5	24
11	Stratified medicine in inflammatory disorders: From theory to practice. Clinical Immunology, 2015, 161, 11-22.	3.2	21
12	Dusp5 negatively regulates <scp>IL</scp> â€33â€mediated eosinophil survival and function. EMBO Journal, 2015, 34, 218-235.	7.8	45
13	In Search of Magic Bullets: The Golden Age of Immunotherapeutics. Cell, 2014, 157, 227-240.	28.9	40
14	Interview: Experiences targeting B cells for the treatment of multiple sclerosis. Immunotherapy, 2014, 6, 127-130.	2.0	1
15	Administration of Anti-CD20 mAb Is Highly Effective in Preventing but Ineffective in Treating Chronic Graft-Versus-Host Disease While Preserving Strong Graft-Versus-Leukemia Effects. Biology of Blood and Marrow Transplantation, 2014, 20, 1089-1103.	2.0	30
16	Accumulation of 4-1BBL+ B cells in the elderly induces the generation of granzyme-B+ CD8+ T cells with potential antitumor activity. Blood, 2014, 124, 1450-1459.	1.4	41
17	B-cell function modulation in multiple sclerosis: a new therapeutic paradigm. Future Neurology, 2014, 9, 23-26.	0.5	0
18	The Autoimmunity-Associated Gene PTPN22 Potentiates Toll-like Receptor-Driven, Type 1 Interferon-Dependent Immunity. Immunity, 2013, 39, 111-122.	14.3	172

ANDREW C CHAN

#	Article	IF	CITATIONS
19	Personalizing medicine for autoimmune and inflammatory diseases. Nature Immunology, 2013, 14, 106-109.	14.5	35
20	Toso regulates the balance between apoptotic and nonapoptotic death receptor signaling by facilitating RIP1 ubiquitination. Blood, 2011, 118, 598-608.	1.4	45
21	B cell immunotherapy in autoimmunity – 2010 update. Molecular Immunology, 2011, 48, 1344-1347.	2.2	15
22	Rituximab's New Therapeutic Target: The Podocyte Actin Cytoskeleton. Science Translational Medicine, 2011, 3, 85ps21.	12.4	15
23	B ell targeted therapies in human autoimmune diseases: an updated perspective. Immunological Reviews, 2010, 237, 264-283.	6.0	210
24	Therapeutic antibodies for autoimmunity and inflammation. Nature Reviews Immunology, 2010, 10, 301-316.	22.7	748
25	<i>PTPN22</i> Deficiency Cooperates with the CD45 E613R Allele to Break Tolerance on a Non-Autoimmune Background. Journal of Immunology, 2009, 182, 4093-4106.	0.8	117
26	A golden era of opportunity in immunotherapy discovery and development. Immunological Reviews, 2008, 223, 5-6.	6.0	0
27	B CELL IMMUNOBIOLOGY IN DISEASE: Evolving Concepts from the Clinic. Annual Review of Immunology, 2006, 24, 467-496.	21.8	349
28	A biosynthetic pathway for anandamide. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13345-13350.	7.1	396
29	Defining Molecular Targets for Drug Design: Synergism Between Academia and Industry. Journal of Pediatric Gastroenterology and Nutrition, 2005, 40, S47.	1.8	0
30	Importance of Cellular Microenvironment and Circulatory Dynamics in B Cell Immunotherapy. Journal of Immunology, 2005, 174, 817-826.	0.8	491
31	PEST Domain-Enriched Tyrosine Phosphatase (PEP) Regulation of Effector/Memory T Cells. Science, 2004, 303, 685-689.	12.6	355
32	Regulation of thymocyte development: only the meek survive. Current Opinion in Immunology, 2003, 15, 199-203.	5.5	22
33	Disruption of T cell signaling networks and development by Grb2 haploid insufficiency. Nature Immunology, 2001, 2, 29-36.	14.5	156
34	Requirement for Tyrosine Residues 315 and 319 within ζ Chain–Associated Protein 70 for T Cell Development. Journal of Experimental Medicine, 2001, 194, 507-518.	8.5	34
35	Inefficient ZAP-70 Phosphorylation and Decreased Thymic Selection In Vivo Result from Inhibition of NF-κB/Rel. Journal of Immunology, 2001, 167, 5628-5635.	0.8	34
36	Requirement for B Cell Linker Protein (BLNK) in B Cell Development. Science, 1999, 286, 1949-1954.	12.6	276

#	Article	IF	CITATIONS
37	Thermodynamic Study of the Binding of the Tandem-SH2 Domain of the Syk Kinase to a Dually Phosphorylated ITAM Peptide: Evidence for Two Conformers. Biochemistry, 1999, 38, 5024-5033.	2.5	56
38	Essential role for ZAP-70 in both positive and negative selection of thymocytes. Nature, 1995, 376, 435-438.	27.8	516
39	Molecular and Genetic Insights into T-Cell Antigen Receptor Signaling. Annals of the New York Academy of Sciences, 1995, 766, 149-156.	3.8	9