Dhriti Kapoor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1208216/publications.pdf

Version: 2024-02-01

238 papers 13,164 citations

25034 57 h-index 30922 102 g-index

260 all docs 260 docs citations

260 times ranked 9495 citing authors

#	Article	IF	CITATIONS
1	Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules, 2019, 24, 2452.	3.8	999
2	Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences, 2019, 1, 1.	2.9	863
3	Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere, 2019, 236, 124364.	8.2	475
4	Phytohormones Regulate Accumulation of Osmolytes Under Abiotic Stress. Biomolecules, 2019, 9, 285.	4.0	412
5	Photosynthetic Response of Plants Under Different Abiotic Stresses: A Review. Journal of Plant Growth Regulation, 2020, 39, 509-531.	5.1	406
6	Assessment of Subcellular ROS and NO Metabolism in Higher Plants: Multifunctional Signaling Molecules. Antioxidants, 2019, 8, 641.	5.1	310
7	Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere, 2019, 216, 449-462.	8.2	308
8	Trichoderma: The "Secrets―of a Multitalented Biocontrol Agent. Plants, 2020, 9, 762.	3.5	287
9	The Impact of Drought in Plant Metabolism: How to Exploit Tolerance Mechanisms to Increase Crop Production. Applied Sciences (Switzerland), 2020, 10, 5692.	2.5	281
10	Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene, 2019, 19, 100182.	2.3	280
11	Chromium Bioaccumulation and Its Impacts on Plants: An Overview. Plants, 2020, 9, 100.	3.5	257
12	Interaction of freshwater microplastics with biota and heavy metals: a review. Environmental Chemistry Letters, 2020, 18, 1813-1824.	16.2	186
13	Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiology and Biochemistry, 2013, 69, 17-26.	5.8	183
14	Selenium modulates dynamics of antioxidative defence expression, photosynthetic attributes and secondary metabolites to mitigate chromium toxicity in Brassica juncea L. plants. Environmental and Experimental Botany, 2019, 161, 180-192.	4.2	177
15	Plant steroidal hormone epibrassinolide regulate – Heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression. Environmental and Experimental Botany, 2016, 122, 1-9.	4.2	172
16	Metal resistant PGPR lowered Cd uptake and expression of metal transporter genes with improved growth and photosynthetic pigments in Lycopersicon esculentum under metal toxicity. Scientific Reports, 2019, 9, 5855.	3.3	163
17	Chromium Stress Mitigation by Polyamine-Brassinosteroid Application Involves Phytohormonal and Physiological Strategies in Raphanus sativus L PLoS ONE, 2012, 7, e33210.	2.5	159
18	Selenium mitigates cadmium-induced oxidative stress in tomato (Solanum lycopersicum L.) plants by modulating chlorophyll fluorescence, osmolyte accumulation, and antioxidant system. Protoplasma, 2018, 255, 459-469.	2.1	157

#	Article	IF	Citations
19	Interaction of Brassinosteroids and Polyamines Enhances Copper Stress Tolerance in Raphanus Sativus. Journal of Experimental Botany, 2012, 63, 5659-5675.	4.8	142
20	Assessment of heavy-metal pollution in three different Indian water bodies by combination of multivariate analysis and water pollution indices. Human and Ecological Risk Assessment (HERA), 2020, 26, 1-16.	3.4	131
21	Redox homeostasis in plants under abiotic stress: role of electron carriers, energy metabolism mediators and proteinaceous thiols. Frontiers in Environmental Science, 2015, 3, .	3.3	130
22	24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants: A review. Plant Physiology and Biochemistry, 2018, 130, 69-79.	5.8	129
23	28-homobrassinolide regulates antioxidant enzyme activities and gene expression in response to saltand temperature-induced oxidative stress in Brassica juncea. Scientific Reports, 2018, 8, 8735.	3. 3	113
24	A critical review on toxicity of cobalt and its bioremediation strategies. SN Applied Sciences, 2020, 2, 1.	2.9	107
25	Interaction of 24-epibrassinolide and salicylic acid regulates pigment contents, antioxidative defense responses, and gene expression in Brassica juncea L. seedlings under Pb stress. Environmental Science and Pollution Research, 2018, 25, 15159-15173.	5.3	106
26	Herbal immune-boosters: Substantial warriors of pandemic Covid-19 battle. Phytomedicine, 2021, 85, 153361.	5 . 3	106
27	Exogenous application of calcium to 24-epibrassinosteroid pre-treated tomato seedlings mitigates NaCl toxicity by modifying ascorbate–glutathione cycle and secondary metabolites. Scientific Reports, 2018, 8, 13515.	3 . 3	105
28	Pre-sowing Seed Treatment with 24-Epibrassinolide Ameliorates Pesticide Stress in Brassica juncea L. through the Modulation of Stress Markers. Frontiers in Plant Science, 2016, 7, 1569.	3.6	104
29	Nitric oxideâ€mediated regulation of oxidative stress in plants under metal stress: a review on molecular and biochemical aspects. Physiologia Plantarum, 2020, 168, 318-344.	5.2	102
30	Combined effect of 24-epibrassinolide and salicylic acid mitigates lead (Pb) toxicity by modulating various metabolites in Brassica juncea L. seedlings. Protoplasma, 2018, 255, 11-24.	2.1	102
31	Supplementation with plant growth promoting rhizobacteria (PGPR) alleviates cadmium toxicity in Solanum lycopersicum by modulating the expression of secondary metabolites. Chemosphere, 2019, 230, 628-639.	8.2	101
32	Jasmonic acid application triggers detoxification of lead (Pb) toxicity in tomato through the modifications of secondary metabolites and gene expression. Chemosphere, 2019, 235, 734-748.	8.2	96
33	Effects of 24-epibrassinolide on growth and metal uptake in Brassica juncea L. under copper metal stress. Acta Physiologiae Plantarum, 2007, 29, 259-263.	2.1	94
34	Nitrates in the environment: A critical review of their distribution, sensing techniques, ecological effects and remediation. Chemosphere, 2022, 287, 131996.	8.2	92
35	Herbicide Glyphosate: Toxicity and Microbial Degradation. International Journal of Environmental Research and Public Health, 2020, 17, 7519.	2.6	91
36	Dietary Polyunsaturated Fatty Acids (PUFAs): Uses and Potential Health Benefits. Current Nutrition Reports, 2021, 10, 232-242.	4.3	88

#	Article	lF	CITATIONS
37	Effects of 28-homobrassinolide on growth, lipid peroxidation and antioxidative enzyme activities in seedlings of Zea mays L. under salinity stress. Acta Physiologiae Plantarum, 2008, 30, 833-839.	2.1	84
38	A review of ecological risk assessment and associated health risks with heavy metals in sediment from India. International Journal of Sediment Research, 2020, 35, 516-526.	3. 5	83
39	Epibrassinolide ameliorates Cr (VI) stress via influencing the levels of indole-3-acetic acid, abscisic acid, polyamines and antioxidant system of radish seedlings. Chemosphere, 2011, 84, 592-600.	8.2	81
40	Plant growth promoting rhizobacteria induced Cd tolerance in Lycopersicon esculentum through altered antioxidative defense expression. Chemosphere, 2019, 217, 463-474.	8.2	81
41	Effect of 28-homobrassinolide on antioxidant defence system in Raphanus sativus L. under chromium toxicity. Ecotoxicology, 2011, 20, 862-874.	2.4	80
42	Exogenous Application of 28-Homobrassinolide Modulates the Dynamics of Salt and Pesticides Induced Stress Responses in an Elite Rice Variety Pusa Basmati-1. Journal of Plant Growth Regulation, 2015, 34, 509-518.	5.1	77
43	Castasterone and citric acid treatment restores photosynthetic attributes in Brassica juncea L. under Cd(II) toxicity. Ecotoxicology and Environmental Safety, 2017, 145, 466-475.	6.0	77
44	Revealing on hydrogen sulfide and nitric oxide signals coâ€ordination for plant growth under stress conditions. Physiologia Plantarum, 2020, 168, 301-317.	5.2	77
45	Differential distribution of amino acids in plants. Amino Acids, 2017, 49, 821-869.	2.7	72
46	Mechanism and kinetics of adsorption and removal of heavy metals from wastewater using nanomaterials. Environmental Chemistry Letters, 2021, 19, 2351-2381.	16.2	72
47	Jasmonic Acid Seed Treatment Stimulates Insecticide Detoxification in Brassica juncea L Frontiers in Plant Science, 2018, 9, 1609.	3.6	71
48	Brassinosteroid Signaling, Crosstalk and, Physiological Functions in Plants Under Heavy Metal Stress. Frontiers in Plant Science, 2021, 12, 608061.	3.6	70
49	Castasterone attenuates insecticide induced phytotoxicity in mustard. Ecotoxicology and Environmental Safety, 2019, 179, 50-61.	6.0	68
50	Jasmonic acid induced changes in physio-biochemical attributes and ascorbate-glutathione pathway in Lycopersicon esculentum under lead stress at different growth stages. Science of the Total Environment, 2018, 645, 1344-1360.	8.0	67
51	Plant steroid hormones produced under Ni stress are involved in the regulation of metal uptake and oxidative stress in Brassica juncea L Chemosphere, 2012, 86, 41-49.	8.2	66
52	Brassinosteroid-mediated pesticide detoxification in plants: A mini-review. Cogent Food and Agriculture, 2018, 4, 1436212.	1.4	66
53	Stress modulation response of 24-epibrassinolide against imidacloprid in an elite indica rice variety Pusa Basmati-1. Pesticide Biochemistry and Physiology, 2013, 105, 144-153.	3.6	64
54	Physiological and Biochemical Changes in <i>Brassica juncea</i> Plants under Cd-Induced Stress. BioMed Research International, 2014, 2014, 1-13.	1.9	64

#	Article	IF	CITATIONS
55	Isolation and characterization of 24-Epibrassinolide from Brassica juncea L. and its effects on growth, Ni ion uptake, antioxidant defense of Brassica plants and in vitro cytotoxicity. Acta Physiologiae Plantarum, 2013, 35, 1351-1362.	2.1	63
56	Zinc application mitigates the adverse effects of NaCl stress on mustard [<i>Brassica juncea</i> (L.) Czern & amp; Coss] through modulating compatible organic solutes, antioxidant enzymes, and flavonoid content. Journal of Plant Interactions, 2017, 12, 429-437.	2.1	63
57	24-epibrassinolide stimulates imidacloprid detoxification by modulating the gene expression of Brassica juncea L. BMC Plant Biology, 2017, 17, 56.	3.6	62
58	Adsorption and detoxification of pharmaceutical compounds from wastewater using nanomaterials: A review on mechanism, kinetics, valorization and circular economy. Journal of Environmental Management, 2021, 300, 113569.	7.8	61
59	Effect of 24-epibrassinolide on oxidative stress markers induced by nickel-ion in Raphanus sativus L Acta Physiologiae Plantarum, 2011, 33, 1723-1735.	2.1	60
60	Arsenic induced modulation of antioxidative defense system and brassinosteroids in Brassica juncea L Ecotoxicology and Environmental Safety, 2015, 115, 119-125.	6.0	60
61	Role of plant growth promoting Bacteria (PGPRs) as biocontrol agents of Meloidogyne incognita through improved plant defense of Lycopersicon esculentum. Plant and Soil, 2019, 436, 325-345.	3.7	60
62	Modulation of antioxidative defense expression and osmolyte content by co-application of 24-epibrassinolide and salicylic acid in Pb exposed Indian mustard plants. Ecotoxicology and Environmental Safety, 2018, 147, 382-393.	6.0	57
63	Castasterone and Citric Acid Supplementation Alleviates Cadmium Toxicity by Modifying Antioxidants and Organic Acids in Brassica juncea. Journal of Plant Growth Regulation, 2018, 37, 286-299.	5.1	57
64	Protective role of selenium against chromium stress involving metabolites and essential elements in Brassica juncea L. seedlings. 3 Biotech, 2018, 8, 66.	2.2	56
65	Temporal distribution, source apportionment, and pollution assessment of metals in the sediments of Beas river, India. Human and Ecological Risk Assessment (HERA), 2018, 24, 2162-2181.	3.4	55
66	Water quality assessment of river Beas, India, using multivariate and remote sensing techniques. Environmental Monitoring and Assessment, 2016, 188, 137.	2.7	52
67	Castasterone confers copper stress tolerance by regulating antioxidant enzyme responses, antioxidants, and amino acid balance in B. juncea seedlings. Ecotoxicology and Environmental Safety, 2018, 147, 725-734.	6.0	52
68	Synergistic effect of 24-epibrassinolide and salicylic acid on photosynthetic efficiency and gene expression in Brassica juncea L. under Pb stress. Turkish Journal of Biology, 2017, 41, 943-953.	0.8	51
69	Effects of 28-homobrassinolide on Seedling Growth, Lipid Peroxidation and Antioxidative Enzyme Activities under Nickel Stress in Seedlings of Zea mays L Asian Journal of Plant Sciences, 2007, 6, 765-772.	0.4	51
70	Modulation of the Functional Components of Growth, Photosynthesis, and Anti-Oxidant Stress Markers in Cadmium Exposed Brassica juncea L Plants, 2019, 8, 260.	3.5	49
71	Role of P-type ATPase metal transporters and plant immunity induced by jasmonic acid against Lead (Pb) toxicity in tomato. Ecotoxicology and Environmental Safety, 2019, 174, 283-294.	6.0	49
72	Epibrassinolide induces changes in indole-3-acetic acid, abscisic acid and polyamine concentrations and enhances antioxidant potential of radish seedlings under copper stress. Physiologia Plantarum, 2010, 140, no-no.	5.2	47

#	Article	IF	Citations
73	Effect of seed pre-soaking with 24-epibrassinolide on growth and photosynthetic parameters of Brassica juncea L. in imidacloprid soil. Ecotoxicology and Environmental Safety, 2016, 133, 195-201.	6.0	47
74	Jasmonic acid-induced tolerance to root-knot nematodes in tomato plants through altered photosynthetic and antioxidative defense mechanisms. Protoplasma, 2018, 255, 471-484.	2.1	47
75	Oxidative stress mitigation and initiation of antioxidant and osmoprotectant responses mediated by ascorbic acid in Brassica juncea L. subjected to copper (II) stress. Ecotoxicology and Environmental Safety, 2019, 182, 109436.	6.0	47
76	Impact of Plant Growth Promoting Rhizobacteria in the Orchestration of Lycopersicon esculentum Mill. Resistance to Plant Parasitic Nematodes: A Metabolomic Approach to Evaluate Defense Responses Under Field Conditions. Biomolecules, 2019, 9, 676.	4.0	47
77	Responses of Plants to Pesticide Toxicity: an Overview. Planta Daninha, 0, 37, .	0.5	47
78	24-epibrassinolide induced antioxidative defense system of Brassica juncea L. under Zn metal stress. Physiology and Molecular Biology of Plants, 2010, 16, 285-293.	3.1	42
79	Seed pre-soaking with 24-epibrassinolide reduces the imidacloprid pesticide residues in green pods of <i>Brassica juncea < /i>L Toxicological and Environmental Chemistry, 2017, 99, 95-103.</i>	1,2	42
80	In-situ localization and biochemical analysis of bio-molecules reveals Pb-stress amelioration in Brassica juncea L. by co-application of 24-Epibrassinolide and Salicylic Acid. Scientific Reports, 2019, 9, 3524.	3.3	42
81	Differential distribution of polyphenols in plants using multivariate techniques. Biotechnology Research and Innovation, 2019, 3, 1-21.	0.9	42
82	Pollution assessment and spatial distribution of roadside agricultural soils: a case study from India. International Journal of Environmental Health Research, 2020, 30, 146-159.	2.7	42
83	Enthralling the impact of engineered nanoparticles on soil microbiome: A concentric approach towards environmental risks and cogitation. Ecotoxicology and Environmental Safety, 2021, 222, 112459.	6.0	42
84	The Common Molecular Players in Plant Hormone Crosstalk and Signaling. Current Protein and Peptide Science, 2015, 16, 369-388.	1.4	42
85	Isolation of 24-epibrassinolide from leaves of Aegle marmelos and evaluation of its antigenotoxicity employing Allium cepa chromosomal aberration assay. Plant Growth Regulation, 2008, 54, 217-224.	3.4	41
86	28-Homobrassinolide alleviates oxidative stress in salt-treated maize (Zea mays L.) plants. Brazilian Journal of Plant Physiology, 2008, 20, 153-157.	0.5	40
87	Epibrassinolide-imidacloprid interaction enhances non-enzymatic antioxidants in Brassica juncea L Indian Journal of Plant Physiology, 2016, 21, 70-75.	0.8	39
88	Analysis of Brassinosteroids in Plants. Journal of Plant Growth Regulation, 2017, 36, 1002-1030.	5.1	38
89	Brassinosteroids Regulate Functional Components of Antioxidative Defense System in Salt Stressed Maize Seedlings. Journal of Plant Growth Regulation, 2020, 39, 1465-1475.	5.1	38
90	Effect of earthworms on growth, photosynthetic efficiency and metal uptake in Brassica juncea L. plants grown in cadmium-polluted soils. Environmental Science and Pollution Research, 2017, 24, 13452-13465.	5.3	37

#	Article	lF	CITATIONS
91	Detection and disinfection of COVID-19 virus in wastewater. Environmental Chemistry Letters, 2021, 19, 1917-1933.	16.2	37
92	Fascinating regulatory mechanism of silicon for alleviating drought stress in plants. Plant Physiology and Biochemistry, 2021, 166, 1044-1053.	5.8	36
93	Effect of 24-epibrassinolide on growth, protein content and antioxidative defense system of Brassica juncea L. subjected to cobalt ion toxicity. Acta Physiologiae Plantarum, 2012, 34, 2007-2017.	2.1	35
94	Role of earthworms in phytoremediation of cadmium (Cd) by modulating the antioxidative potential of Brassica juncea L Applied Soil Ecology, 2018, 124, 306-316.	4.3	35
95	Heavy metal induced regulation of plant biology: Recent insights. Physiologia Plantarum, 2022, 174, e13688.	5.2	35
96	Effects of 24-epibrassinolide and 28-homobrassinolide on the growth and antioxidant enzyme activities in the seedlings of Brassica juncea L Physiology and Molecular Biology of Plants, 2009, 15, 335-341.	3.1	34
97	Mitigation of adverse effects of chlorpyrifos by 24-epibrassinolide and analysis of stress markers in a rice variety Pusa Basmati-1. Ecotoxicology and Environmental Safety, 2012, 85, 72-81.	6.0	33
98	Ecological and human health risks appraisal of metal(loid)s in agricultural soils: a review. , 2021, 5, 173-185.		33
99	Effect of 28-homobrassinolide on growth, zinc metal uptake and antioxidative enzyme activities in Brassica juncea L. seedlings. Brazilian Journal of Plant Physiology, 2007, 19, 203-210.	0.5	30
100	Plant Signaling Under Abiotic Stress Environment. , 2012, , 297-323.		29
101	Responses of Phytochelatins and Metallothioneins in Alleviation of Heavy MetalÂStress in Plants. , 2016, , 263-283.		29
102	Cd induced generation of free radical species in Brassica juncea is regulated by supplementation of earthworms in the drilosphere. Science of the Total Environment, 2019, 655, 663-675.	8.0	29
103	Foliar Application of 24-Epibrassinolide Improves Growth, Ascorbate-Glutathione Cycle, and Glyoxalase System in Brown Mustard (Brassica juncea (L.) Czern.) under Cadmium Toxicity. Plants, 2020, 9, 1487.	3.5	29
104	ROS Signaling in Plants Under Heavy Metal Stress. , 2017, , 185-214.		28
105	Co-application of 6-ketone type brassinosteroid and metal chelator alleviates cadmium toxicity in B. juncea L Environmental Science and Pollution Research, 2017, 24, 685-700.	5.3	28
106	Analysis of organic acids of tricarboxylic acid cycle in plants using GC-MS, and system modeling. Journal of Analytical Science and Technology, 2017, 8, .	2.1	28
107	Multivariate analysis on the distribution of elements in plants. Acta Physiologiae Plantarum, 2018, 40, 1.	2.1	28
108	Microbial Fortification Improved Photosynthetic Efficiency and Secondary Metabolism in Lycopersicon esculentum Plants Under Cd Stress. Biomolecules, 2019, 9, 581.	4.0	28

#	Article	IF	Citations
109	Insights into the Role of Streptomyces hydrogenans as the Plant Growth Promoter, Photosynthetic Pigment Enhancer and Biocontrol Agent against Meloidogyne incognita in Solanum lycopersicum Seedlings. Plants, 2020, 9, 1109.	3.5	28
110	A tabulated review on distribution of heavy metals in various plants. Environmental Science and Pollution Research, 2017, 24, 2210-2260.	5.3	27
111	GC-MS studies reveal stimulated pesticide detoxification by brassinolide application in Brassica juncea L. plants. Environmental Science and Pollution Research, 2016, 23, 14518-14525.	5.3	26
112	Seed Priming with Jasmonic Acid Counteracts Root Knot Nematode Infection in Tomato by Modulating the Activity and Expression of Antioxidative Enzymes. Biomolecules, 2020, 10, 98.	4.0	26
113	Scrutinizing the impact of water deficit in plants: Transcriptional regulation, signaling, photosynthetic efficacy, and management. Physiologia Plantarum, 2021, 172, 935-962.	5.2	26
114	Regulation of growth and antioxidant enzyme activities by 28-homobrassinolide in seedlings of Raphanus sativus L. under cadmium stress. Indian Journal of Biochemistry and Biophysics, 2010, 47, 172-7.	0.0	26
115	Amelioration of Chromium-Induced Oxidative Stress by Combined Treatment of Selected Plant-Growth-Promoting Rhizobacteria and Earthworms via Modulating the Expression of Genes Related to Reactive Oxygen Species Metabolism in Brassica juncea. Frontiers in Microbiology, 2022, 13, 802512.	3.5	25
116	Exploiting the Allelopathic Potential of Aqueous Leaf Extracts of Artemisia absinthium and Psidium guajava against Parthenium hysterophorus, a Widespread Weed in India. Plants, 2019, 8, 552.	3.5	24
117	Wonder or evil?: Multifaceted health hazards and health benefits of Cannabis sativa and its phytochemicals. Saudi Journal of Biological Sciences, 2021, 28, 7290-7313.	3.8	24
118	Agroecotoxicological Aspect of Cd in Soil–Plant System: Uptake, Translocation and Amelioration Strategies. Environmental Science and Pollution Research, 2022, 29, 30908-30934.	5. 3	24
119	Enhancing effects of 24-epibrassinolide and Putrescine on the antioxidant capacity and free radical scavenging activity of Raphanus sativus seedlings under Cu ion stress. Acta Physiologiae Plantarum, 2011, 33, 1319-1333.	2.1	23
120	Involvement of Asada-Halliwell Pathway During Phytoremediation of Chromium (VI) in <i>Brassica juncea</i> L. Plants. International Journal of Phytoremediation, 2015, 17, 1237-1243.	3.1	23
121	Biochemical markers for prolongation of the acute stress of triclosan in the early life stages of four food fishes. Chemosphere, 2020, 247, 125914.	8.2	23
122	In-vitro antioxidant, antimutagenic and cancer cell growth inhibition activities of Rhododendron arboreum leaves and flowers. Saudi Journal of Biological Sciences, 2020, 27, 1788-1796.	3.8	23
123	Isolation and characterization of brassinosteroids from immature seeds of Camellia sinensis (O) Kuntze. Plant Growth Regulation, 2007, 53, 1-5.	3.4	22
124	Isolation of Phytochemicals from Bauhinia variegata L. Bark and Their In Vitro Antioxidant and Cytotoxic Potential. Antioxidants, 2019, 8, 492.	5.1	22
125	New indices regarding the dominance and diversity of communities, derived from sample variance and standard deviation. Heliyon, 2019, 5, e02606.	3.2	22
126	5-aminolevulinic acid regulates Krebs cycle, antioxidative system and gene expression in Brassica juncea L. to confer tolerance against lead toxicity. Journal of Biotechnology, 2020, 323, 283-292.	3.8	22

#	Article	IF	Citations
127	Mitigating Cadmium Toxicity in Plants by Phytohormones. , 2019, , 375-396.		21
128	Effect of Rhododendron arboreum Leaf Extract on the Antioxidant Defense System against Chromium (VI) Stress in Vigna radiata Plants. Plants, 2020, 9, 164.	3.5	21
129	Plants-nematodes-microbes crosstalk within soil: A trade-off among friends or foes. Microbiological Research, 2021, 248, 126755.	5.3	21
130	Changes induced by Cu2+ and Cr6+ metal stress in polyamines, auxins, abscisic acid titers and antioxidative enzymes activities of radish seedlings. Brazilian Journal of Plant Physiology, 2010, 22, 263-270.	0.5	20
131	28-Homobrassinolide alters protein content and activities of glutathione-S-transferase and polyphenol oxidase in Raphanus sativus L. plants under heavy metal stress. Toxicology International, 2014, 21, 45.	0.1	20
132	$28\mbox{-}Homobrassinolide$ potential for oxidative interface in Brassica juncea under temperature stress. Acta Physiologiae Plantarum, 2017, 39, 1.	2.1	20
133	Ameliorative Role of Castasterone on Copper Metal Toxicity by Improving Redox Homeostasis in Brassica juncea L Journal of Plant Growth Regulation, 2018, 37, 575-590.	5.1	20
134	Plant growth regulators: a sustainable approach to combat pesticide toxicity. 3 Biotech, 2020, 10, 466.	2.2	20
135	24-epibrassinolide regulated diminution of Cr metal toxicity in Brassica juncea L. plants. Brazilian Journal of Plant Physiology, 2010, 22, 159-165.	0.5	20
136	Assessment of pollution in roadside soils by using multivariate statistical techniques and contamination indices. SN Applied Sciences, 2019, 1 , 1 .	2.9	19
137	Evaluation of the role of Rhizobacteria in controlling root knot nematode (RKN) infection in Lycopersicon esculentum plants by modulation in the secondary metabolite profiles. AoB PLANTS, 2019,	2.3	19
138	Microbial biotechnological approaches: renewable bioprocessing for the future energy systems. Microbial Cell Factories, 2021, 20, 55.	4.0	19
139	Role of Se(VI) in counteracting oxidative damage in Brassica juncea L. under Cr(VI) stress. Acta Physiologiae Plantarum, 2017, 39, 1.	2.1	18
140	Microbial production of dicarboxylic acids from edible plants and milk using GC-MS. Journal of Analytical Science and Technology, 2018, 9, .	2.1	18
141	Antioxidant and Antimutagenic Activities of Different Fractions from the Leaves of Rhododendron arboreum Sm. and Their GC-MS Profiling. Molecules, 2018, 23, 2239.	3.8	18
142	Current Scenario of Pb Toxicity in Plants: Unraveling Plethora of Physiological Responses. Reviews of Environmental Contamination and Toxicology, 2019, 249, 153-197.	1.3	18
143	Biomarkers for the toxicity of sublethal concentrations of triclosan to the early life stages of carps. Scientific Reports, 2020, 10, 17322.	3.3	18
144	Amino acids distribution in economical important plants: a review. Biotechnology Research and Innovation, 2019, 3, 197-207.	0.9	17

#	Article	IF	Citations
145	Tartaric Acid Mediated Cr Hyperaccumulation and Biochemical alterations in seedlings of Hordeum vulgare L Journal of Plant Growth Regulation, 2020, 39, 1-14.	5.1	17
146	Stress Protective Effect of Rhododendron arboreum Leaves (MEL) on Chromium-Treated Vigna radiata Plants. Journal of Plant Growth Regulation, 2021, 40, 423-435.	5.1	16
147	Effect of 28-homobrassinolide on susceptible and resistant cultivars of tomato after nematode inoculation. Plant Growth Regulation, 2013, 71, 199-205.	3.4	15
148	Effect of cobalt(II) chloride hexahydrate on some human cancer cell lines. SpringerPlus, 2016, 5, 930.	1.2	15
149	Assessment of soil properties from catchment areas of Ravi and Beas rivers: a review., 2019, 3, 149-157.		15
150	Lignins and Abiotic Stress: An Overview. , 2014, , 267-296.		15
151	Role of Compatible Solutes in Enhancing Antioxidative Defense in Plants Exposed to Metal Toxicity. , 2018, , 207-228.		14
152	Therapeutic Potential of Brassinosteroids in Biomedical and Clinical Research. Biomolecules, 2020, 10, 572.	4.0	14
153	Emerging Trends and Tools in Transgenic Plant Technology for Phytoremediation of Toxic Metals and Metalloids. , 2019, , 63-88.		13
154	Mechanisms of Plant Defense Under Pathogen Stress: A Review. Current Protein and Peptide Science, 2021, 22, 376-395.	1.4	13
155	Unsnarling Plausible Role of Plant Growth-Promoting Rhizobacteria for Mitigating Cd-Toxicity from Plants: An Environmental Safety Aspect. Journal of Plant Growth Regulation, 2022, 41, 2514-2542.	5.1	13
156	Role of Various Hormones in Photosynthetic Responses of Green Plants Under Environmental Stresses. Current Protein and Peptide Science, 2015, 16, 435-449.	1.4	13
157	Brassinosteroids and metalloids: Regulation of plant biology. Journal of Hazardous Materials, 2022, 424, 127518.	12.4	13
158	LEA Proteins in Salt Stress Tolerance. , 2013, , 79-112.		12
159	Role of Salicylic Acid in Heavy Metal Stress Tolerance: Insight into Underlying Mechanism. , 2017, , 123-144.		12
160	Physiological and molecular insights into the role of silicon in improving plant performance under abiotic stresses. Plant and Soil, 2023, 486, 25-43.	3.7	12
161	Epibrassinolide regulated synthesis of polyamines and auxins in Raphanus sativus L. seedlings under Cu metal stress. Brazilian Journal of Plant Physiology, 2009, 21, 25-32.	0.5	11
162	Alleviation of Cadmium and Mercury Stress by Supplementation of Steroid Hormone to Raphanus sativus Seedlings. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2016, 86, 661-666.	1.0	11

#	Article	IF	CITATIONS
163	Nitric Oxide: A Ubiquitous Signal Molecule for Enhancing Plant Tolerance to Salinity Stress and Their Molecular Mechanisms. Journal of Plant Growth Regulation, 2021, 40, 2329-2341.	5.1	11
164	Amelioration of Chlorpyrifos-Induced Toxicity in Brassica juncea L. by Combination of 24-Epibrassinolide and Plant-Growth-Promoting Rhizobacteria. Biomolecules, 2021, 11, 877.	4.0	11
165	Water Quality of River Beas, India. Current Science, 2017, 112, 1138.	0.8	11
166	Emerging Role of Polyamines in Plant Stress Tolerance. Current Protein and Peptide Science, 2018, 19, 1114-1123.	1.4	11
167	Antifungal and Antioxidant Profile of Ethnomedicinally Important Liverworts (Pellia endivaefolia and) Tj ETQq1 1 Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2015, 85, 571-579.	0.784314 1.0	rgBT /Overlo
168	ROS-Induced Transcription Factors During Oxidative Stress in Plants: A Tabulated Review. , 2017, , 129-158.		10
169	Prospects of Field Crops for Phytoremediation of Contaminants. , 2014, , 449-470.		9
170	Castasterone assisted accumulation of polyphenols and antioxidant to increase tolerance of B. juncea plants towards copper toxicity. Cogent Food and Agriculture, 2016, 2, .	1.4	9
171	Phytoremediation in Waste Management: Hyperaccumulation Diversity and Techniques. , 2018, , 277-302.		9
172	Physiological responses, tolerance, and remediation strategies in plants exposed to metalloids. Environmental Science and Pollution Research, 2021, 28, 40233-40248.	5.3	9
173	Salicylic Acid-Mediated Regulation of Morpho-Physiological and Yield Attributes of Wheat and Barley Plants in Deferring Salinity Stress. Journal of Plant Growth Regulation, 2022, 41, 1291-1303.	5.1	9
174	Amelioration of oxidative stress by trans-Anethole via modulating phase I and phase II enzymes against hepatic damage induced by CCl4 in male Wistar rats. Environmental Science and Pollution Research, 2022, 29, 6317-6333.	5.3	9
175	Phytoremediation of mercury using Eichhornia crassipes (Mart.) Solms. International Journal of Environment and Waste Management, 2011, 8, 92.	0.3	8
176	Interactive effects of binary combinations of manganese with other heavy metals on metal uptake and antioxidative enzymes in <i>Brassica juncea</i> L. seedlings. Journal of Plant Interactions, 2011, 6, 25-34.	2.1	8
177	24-Epibrassinolide Restores the Synthesis of Proteins and Amino Acids in <i>Brassica juncea</i> L. Leaves Under Imidacloprid Stress. Journal of Horticultural Research, 2017, 25, 85-90.	0.9	8
178	Comparison of different reflectance indices for vegetation analysis using Landsat-TM data. Remote Sensing Applications: Society and Environment, 2018, 12, 70-77.	1.5	8
179	Elemental Composition of Plants and Multivariate Analysis. The National Academy of Sciences, India, 2019, 42, 45-50.	1.3	8
180	Histochemical and physicochemical studies reveal improved defense in tomato under Cd stress with rhizobacterial supplementation. Plant and Soil, 2020, 446, 393-411.	3.7	8

#	Article	IF	Citations
181	Nitric oxide, salicylic acid and oxidative stress: Is it a perfect equilateral triangle?. Plant Physiology and Biochemistry, 2022, 184, 56-64.	5.8	8
182	Aquaporins: Role Under Salt Stress in Plants. , 2013, , 213-248.		7
183	Osmolyte Dynamics. , 2014, , 405-430.		7
184	Use of Fungi in Mitigating Cadmium Toxicity in Plants. , 2019, , 397-426.		7
185	Role of Organic Acids in Mitigating Cadmium Toxicity in Plants. , 2019, , 255-279.		7
186	Role and Regulation of ROS and Antioxidants as Signaling Molecules in Response to Abiotic Stresses. , 2019, , 141-156.		7
187	Antagonistic effects of EDTA against biochemical toxicity induced by Cr(VI) in Hordeum vulgare L. seedlings. Physiology and Molecular Biology of Plants, 2020, 26, 2487-2502.	3.1	7
188	<i>trans</i> -Anethole Abrogates Cell Proliferation and Induces Apoptosis through the Mitochondrial-Mediated Pathway in Human Osteosarcoma Cells. Nutrition and Cancer, 2021, 73, 1727-1745.	2.0	7
189	Interaction of Salicylic Acid with Plant Hormones in Plants Under Abiotic Stress., 2017,, 201-219.		7
190	Phytochemical and Elemental Analysis of <i>Brassica juncea </i> L. Leaves using GC-MS and SEM-EDX. Research Journal of Pharmacy and Technology, 2015, 8, 1662.	0.8	7
191	Aquaporinâ€mediated transport: Insights into metalloid trafficking. Physiologia Plantarum, 2022, 174, e13687.	5.2	7
192	Maleic acid and EDTA mediated extenuation of Co(II) stress in Hordeum vulgare seedlings. Biotechnology Research and Innovation, 2019, 3, 221-230.	0.9	6
193	Characterization and Antioxidant Activity of oil Extract of a Gymnosperm-Araucaria cunninghamiiAiton ex D. Don. Research Journal of Pharmacy and Technology, 2016, 9, 875.	0.8	6
194	Water Quality of River Beas, India, and Its Correlation with Reflectance Data. Journal of Water Chemistry and Technology, 2020, 42, 134-141.	0.6	5
195	Appraisal of heavy metal pollution in groundwater of Malwa region, Punjab (India) using stress biomarkers in Brassica juncea. Environmental Earth Sciences, 2021, 80, 1.	2.7	5
196	Biological management of allelopathic plant <i>Parthenium</i> sp Open Agriculture, 2020, 5, 252-261.	1.7	5
197	Phytochemical profiling of the leaves of Chenopodium and Polygonum using GC-MS. Research Journal of Pharmacy and Technology, 2015, 8, 1629.	0.8	5
198	Amelioration of Mn toxicity by Brassinosteroids in Brassica juncea L International Journal of Environment and Waste Management, $2011, 8, 114$.	0.3	4

#	Article	lF	Citations
199	Brassinosteroids: Improving Crop Productivity and Abiotic Stress Tolerance. , 2014, , 161-187.		4
200	Role of Micro-organisms in Modulating Antioxidant Defence in Plants Exposed to Metal Toxicity. , 2018, , 303-335.		4
201	Role and Regulation of Plant Hormones as a Signal Molecule in Response to Abiotic Stresses. , 2019, , 303-317.		4
202	A Current Scenario on Role of Brassinosteroids in Plant Defense Triggered in Response to Biotic Challenges. , 2019, , 367-388.		4
203	Antioxidant Potential of Plant Growth-Promoting Rhizobacteria (PGPR) in Agricultural Crops Infected with Root-Knot Nematodes. , 2021, , 339-379.		4
204	General view on H2S and abiotic stress tolerance in plants. , 2021, , 113-132.		4
205	Physico-chemical Characterization of Agricultural Soil Samples and Their Modulatory Effects on Cytogenetic and Biochemical Parameters of Allium cepa. Journal of Soil Science and Plant Nutrition, 2021, 21, 1890-1903.	3.4	4
206	Hydrogen sulfide and phytohormones crosstalk in plant defense against abiotic stress., 2021,, 267-302.		4
207	PGPR and Earthworm-Assisted Phytoremediation of Heavy Metals. , 2020, , 227-245.		4
208	Application of melatonin and PGPR alleviates thiamethoxam induced toxicity by regulating the TCA cycle in Brassica juncea L. Saudi Journal of Biological Sciences, 2022, 29, 1348-1354.	3.8	4
209	Fragrance Stimulation Mechanisms of Flowers and their Regulation Under Environmental Constraints. Journal of Plant Growth Regulation, 2023, 42, 60-82.	5.1	4
210	Harnessing the role of selenium in soil–plant-microbe ecosystem: ecophysiological mechanisms and future prospects. Plant Growth Regulation, 2023, 100, 197-217.	3.4	4
211	Bioefficacy of Bio-metabolites Produced by Streptomyces sp. Strain MR-14 in Ameliorating Meloidogyne incognita Stress in Solanum lycopersicum Seedlings. Journal of Plant Growth Regulation, 2022, 41, 3359-3371.	5.1	3
212	Role of Plant Growth Regulators (PGRs) in Mitigation of Heavy Metal Phytotoxicity in Plants. Nanotechnology in the Life Sciences, 2020, , 263-304.	0.6	3
213	Implication of H2S and Ca signaling in abiotic stress tolerance in plants. , 2021, , 303-340.		2
214	Impact of Cobalt Oxide Nanoparticles on the Morpho-physiological and Biochemical Response in Plants. Nanotechnology in the Life Sciences, 2021, , 249-267.	0.6	2
215	Extending the concept of entropy-negentropy for the assessment of ecological dominance and diversity at alpha, beta and gamma levels., 2023, 7, 27-39.		2
216	Genetic toolbox and regulatory circuits of plant-nematode associations. Plant Physiology and Biochemistry, 2021, 165, 137-146.	5.8	2

#	Article	IF	Citations
217	Nanoparticle-Induced Oxidative Stress in Plant. Nanotechnology in the Life Sciences, 2021, , 269-313.	0.6	2
218	Regulation of salinity stress by hydrogen sulfide in plants., 2021,, 213-227.		2
219	Gene Silencing. , 2014, , 209-228.		1
220	Emerging Trends in Physiological and Biochemical Responses of Salicylic Acid., 2017, , 47-75.		1
221	Emerging Trends on Crosstalk of BRS with Other Phytohormones. , 2019, , 425-441.		1
222	Evaluating groundwater for its probable mutagenicity and genotoxicity using in vitro bioanalytical tools. Exposure and Health, 2019, 11, 21-31.	4.9	1
223	Variability, Behaviour and Impact of Nanoparticles in the Environment. Nanotechnology in the Life Sciences, 2021, , 315-328.	0.6	1
224	Regulation of drought stress by hydrogen sulfide in plants. , 2021, , 229-242.		1
225	CRISPR/CAS9 Technologies to Enhance Tolerance to Abiotic Stress in Crop Plants. , 2021, , 206-216.		1
226	Physiological Role of Mineral Nutrients and their Uptake during Abiotic Stress., 2021,, 75-88.		1
227	Phytohormones in Improving Abiotic Stress Tolerance in Plants. , 2019, , 81-102.		1
228	The Role of Sugars in Improving Plant Abiotic Stress Tolerance. , 2020, , 31-48.		1
229	Role of Beneficial Microbes in the Molecular Phytotoxicity of Heavy Metals. Nanotechnology in the Life Sciences, 2020, , 227-262.	0.6	1
230	Role of Biochar in Heavy Metal Toxicity in Plants. Nanotechnology in the Life Sciences, 2020, , 349-371.	0.6	1
231	Plant-Microbe Interactions under Adverse Environment. , 2020, , 717-751.		1
232	Physiological Alterations and Heavy Metal Accumulation in the Lichen Pyxine cocoes (Sw.) Nyl. of Mandi District, Himachal Pradesh. Journal of Plant Growth Regulation, 2023, 42, 415-422.	5.1	1
233	Sustainability at Border Villages of Punjab (India): A Critical Study on Initiatives and Practices. Current World Environment Journal, 2021, 16, 70-83.	0.5	0
234	Cd-Metal Stress Protection in B. juncea triggered by the Synthesis of Osmolytes, Plant Growth Regulators and Antioxidants. Research Journal of Pharmacy and Technology, 2016, 9, 1417.	0.8	0

#	Article	IF	CITATIONS
235	Sulfur Nutrition and Abiotic Stress Tolerance in Plant. , 2019, , 219-234.		0
236	Toxicity of Environmental Contaminants: Use of Battery of Standard Biological Assays., 2019, , 47-64.		0
237	Emerging Trends of Proline Metabolism in Abiotic Stress Management. , 2020, , 177-202.		0
238	Changes in photosynthetic pigments in relation to soils contaminated with industrial activities in Cassia occidentalis L Indian Journal of Forestry, 2016, 39, 231-233.	0.0	O