
Davide Anguita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1208200/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deep fair models for complex data: Graphs labeling and explainable face recognition. Neurocomputing, 2022, 470, 318-334.	5.9	13
2	Optimizing Fuel Consumption in Thrust Allocation for Marine Dynamic Positioning Systems. IEEE Transactions on Automation Science and Engineering, 2022, 19, 122-142.	5.2	10
3	The benefits of adversarial defense in generalization. Neurocomputing, 2022, 505, 125-141.	5.9	3
4	Accuracy and Intrusiveness in Data-Driven Violin Players Skill Levels Prediction: MOCAP Against MYO Against KINECT. Lecture Notes in Computer Science, 2021, , 367-379.	1.3	3
5	Learn and Visually Explain Deep Fair Models: an Application to Face Recognition. , 2021, , .		0
6	Toward Learning Trustworthily from Data Combining Privacy, Fairness, and Explainability: An Application to Face Recognition. Entropy, 2021, 23, 1047.	2.2	8
7	Keep it Simple: Handcrafting Feature and Tuning Random Forests and XGBoost to face the Affective Movement Recognition Challenge 2021. , 2021, , .		4
8	Improving Railway Maintenance Actions with Big Data and Distributed Ledger Technologies. Proceedings of the International Neural Networks Society, 2020, , 120-125.	0.6	1
9	A dynamic, interpretable, and robust hybrid data analytics system for train movements in large-scale railway networks. International Journal of Data Science and Analytics, 2020, 9, 95-111.	4.1	15
10	Train Overtaking Prediction in Railway Networks: A Big Data Perspective. Proceedings of the International Neural Networks Society, 2020, , 142-151.	0.6	1
11	Understanding Violin Players' Skill Level Based on Motion Capture: a Data-Driven Perspective. Cognitive Computation, 2020, 12, 1356-1369.	5.2	12
12	Spectral Analysis of Electricity Demand Using Hilbert–Huang Transform. Sensors, 2020, 20, 2912.	3.8	17
13	Visual Analytics for Supporting Conflict Resolution in Large Railway Networks. Proceedings of the International Neural Networks Society, 2020, , 206-215.	0.6	0
14	Local Rademacher Complexity Machine. Neurocomputing, 2019, 342, 24-32.	5.9	4
15	Mining Big Data with Random Forests. Cognitive Computation, 2019, 11, 294-316.	5.2	15
16	Randomized learning: Generalization performance of old and new theoretically grounded algorithms. Neurocomputing, 2018, 298, 21-33.	5.9	5
17	Learning With Kernels: A Local Rademacher Complexity-Based Analysis With Application to Graph Kernels. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 4660-4671.	11.3	7
18	Condition-Based Maintenance of Naval Propulsion Systems with supervised Data Analysis. Ocean Engineering, 2018, 149, 268-278.	4.3	57

#	Article	IF	CITATIONS
19	Condition-based maintenance of naval propulsion systems: Data analysis with minimal feedback. Reliability Engineering and System Safety, 2018, 177, 12-23.	8.9	50
20	Multilayer Graph Node Kernels: Stacking While Maintaining Convexity. Neural Processing Letters, 2018, 48, 649-667.	3.2	4
21	Data-Driven Photovoltaic Power Production Nowcasting and Forecasting for Polygeneration Microgrids. IEEE Systems Journal, 2018, 12, 2842-2853.	4.6	27
22	Train Delay Prediction Systems: A Big Data Analytics Perspective. Big Data Research, 2018, 11, 54-64.	4.2	85
23	Unintrusive Monitoring of Induction Motors Bearings via Deep Learning on Stator Currents. Procedia Computer Science, 2018, 144, 42-51.	2.0	12
24	Crash Stop Maneuvering Performance Prediction: a Data-Driven Solution for Safety and Collision Avoidance. Data-Enabled Discovery and Applications, 2018, 2, 1.	1.2	4
25	Vessels Fuel Consumption: A Data Analytics Perspective to Sustainability. Studies in Fuzziness and Soft Computing, 2018, , 11-48.	0.8	11
26	Differential privacy and generalization: Sharper bounds with applications. Pattern Recognition Letters, 2017, 89, 31-38.	4.2	17
27	Dynamic Delay Predictions for Large-Scale Railway Networks: Deep and Shallow Extreme Learning Machines Tuned via Thresholdout. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47, 2754-2767.	9.3	72
28	Measuring the expressivity of graph kernels through Statistical Learning Theory. Neurocomputing, 2017, 268, 4-16.	5.9	9
29	SLT-Based ELM for Big Social Data Analysis. Cognitive Computation, 2017, 9, 259-274.	5.2	11
30	Vessels fuel consumption forecast and trim optimisation: A data analytics perspective. Ocean Engineering, 2017, 130, 351-370.	4.3	127
31	Constraint-Aware Data Analysis on Mobile Devices. , 2017, , 127-149.		9
32	ReForeSt: Random Forests in Apache Spark. Lecture Notes in Computer Science, 2017, , 331-339.	1.3	3
33	Marine Safety and Data Analytics: Vessel Crash Stop Maneuvering Performance Prediction. Lecture Notes in Computer Science, 2017, , 385-393.	1.3	4
34	Semi-supervised Learning for Affective Common-Sense Reasoning. Cognitive Computation, 2017, 9, 18-42.	5.2	16
35	Delay Prediction System for Large-Scale Railway Networks Based on Big Data Analytics. Advances in Intelligent Systems and Computing, 2017, , 139-150.	0.6	5
36	Crack random forest for arbitrary large datasets. , 2017, , .		1

36 Crack random forest for arbitrary large datasets. , 2017, , .

#	Article	IF	CITATIONS
37	Deep graph node kernels: A convex approach. , 2017, , .		1
38	Machine learning approaches for improving condition-based maintenance of naval propulsion plants. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2016, 230, 136-153.	0.5	53
39	Advanced Analytics for Train Delay Prediction Systems by Including Exogenous Weather Data. , 2016, , .		25
40	A local Vapnik–Chervonenkis complexity. Neural Networks, 2016, 82, 62-75.	5.9	13
41	Statistical Learning Theory and ELM for Big Social Data Analysis. IEEE Computational Intelligence Magazine, 2016, 11, 45-55.	3.2	88
42	PAC-bayesian analysis of distribution dependent priors: Tighter risk bounds and stability analysis. Pattern Recognition Letters, 2016, 80, 200-207.	4.2	16
43	Vessel monitoring and design in industry 4.0: A data driven perspective. , 2016, , .		4
44	Global Rademacher Complexity Bounds: From Slow to Fast Convergence Rates. Neural Processing Letters, 2016, 43, 567-602.	3.2	17
45	Learning Hardware-Friendly Classifiers Through Algorithmic Stability. Transactions on Embedded Computing Systems, 2016, 15, 1-29.	2.9	3
46	Can machine learning explain human learning?. Neurocomputing, 2016, 192, 14-28.	5.9	13
47	Tikhonov, Ivanov and Morozov regularization for support vector machine learning. Machine Learning, 2016, 103, 103-136.	5.4	44
48	Transition-Aware Human Activity Recognition Using Smartphones. Neurocomputing, 2016, 171, 754-767.	5.9	502
49	Learning Analytics for a Puzzle Game to Discover the Puzzle-Solving Tactics of Players. Lecture Notes in Computer Science, 2016, , 673-677.	1.3	2
50	Learning Hardware Friendly Classifiers Through Algorithmic Risk Minimization. Smart Innovation, Systems and Technologies, 2016, , 403-413.	0.6	0
51	Shrinkage learning to improve SVM with hints. , 2015, , .		1
52	Support vector machines and strictly positive definite kernel: The regularization hyperparameter is more important than the kernel hyperparameters. , 2015, , .		11
53	Fast convergence of extended Rademacher Complexity bounds. , 2015, , .		0
54	Performance assessment and uncertainty quantification of predictive models for smart manufacturing systems. , 2015, , .		3

Davide Anguita

#	Article	IF	CITATIONS
55	Ship efficiency forecast based on sensors data collection: Improving numerical models through data analytics. , 2015, , .		12
56	Fully Empirical and Data-Dependent Stability-Based Bounds. IEEE Transactions on Cybernetics, 2015, 45, 1913-1926.	9.5	29
57	Learning Resource-Aware Classifiers for Mobile Devices: From Regularization to Energy Efficiency. Neurocomputing, 2015, 169, 225-235.	5.9	14
58	Local Rademacher Complexity: Sharper risk bounds with and without unlabeled samples. Neural Networks, 2015, 65, 115-125.	5.9	25
59	Machine learning for wear forecasting of naval assets for condition-based maintenance applications. , 2015, , .		9
60	Condition Based Maintenance in Railway Transportation Systems Based on Big Data Streaming Analysis. Procedia Computer Science, 2015, 53, 437-446.	2.0	98
61	Big Data Analytics in the Cloud: Spark on Hadoop vs MPI/OpenMP on Beowulf. Procedia Computer Science, 2015, 53, 121-130.	2.0	147
62	A Learning Analytics Approach to Correlate the Academic Achievements of Students with Interaction Data from an Educational Simulator. Lecture Notes in Computer Science, 2015, , 352-366.	1.3	37
63	Out-of-Sample Error Estimation: The Blessing of High Dimensionality. , 2014, , .		0
64	A Deep Connection Between the Vapnik–Chervonenkis Entropy and the Rademacher Complexity. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25, 2202-2211.	11.3	20
65	Smartphone battery saving by bit-based hypothesis spaces and local Rademacher Complexities. , 2014, , .		1
66	Unlabeled patterns to tighten Rademacher complexity error bounds for kernel classifiers. Pattern Recognition Letters, 2014, 37, 210-219.	4.2	11
67	Human Activity Recognition on Smartphones with Awareness of Basic Activities and Postural Transitions. Lecture Notes in Computer Science, 2014, , 177-184.	1.3	45
68	A Learning Analytics Methodology to Profile Students Behavior and Explore Interactions with a Digital Electronics Simulator. Lecture Notes in Computer Science, 2014, , 596-597.	1.3	4
69	An improved analysis of the Rademacher data-dependent bound using its self bounding property. Neural Networks, 2013, 44, 107-111.	5.9	15
70	Energy Load Forecasting Using Empirical Mode Decomposition and Support Vector Regression. IEEE Transactions on Smart Grid, 2013, 4, 549-556.	9.0	182
71	A support vector machine classifier from a bit-constrained, sparse and localized hypothesis space. , 2013, , .		5
72	Some results about the Vapnik-Chervonenkis entropy and the rademacher complexity. , 2013, , .		1

#	Article	IF	CITATIONS
73	Training Computationally Efficient Smartphone–Based Human Activity Recognition Models. Lecture Notes in Computer Science, 2013, , 426-433.	1.3	19
74	A Survey of old and New Results for the Test Error Estimation of a Classifier. Journal of Artificial Intelligence and Soft Computing Research, 2013, 3, 229-242.	4.3	6
75	A Novel Procedure for Training L1-L2 Support Vector Machine Classifiers. Lecture Notes in Computer Science, 2013, , 434-441.	1.3	1
76	Long-term energy load forecasting using Auto-Regressive and approximating Support Vector Regression. , 2012, , .		4
77	Smart underwater wireless sensor networks. , 2012, , .		15
78	In-Sample and Out-of-Sample Model Selection and Error Estimation for Support Vector Machines. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23, 1390-1406.	11.3	95
79	Rademacher Complexity and Structural Risk Minimization: An Application to Human Gene Expression Datasets. Lecture Notes in Computer Science, 2012, , 491-498.	1.3	1
80	Nested Sequential Minimal Optimization for Support Vector Machines. Lecture Notes in Computer Science, 2012, , 156-163.	1.3	3
81	Human Activity Recognition on Smartphones Using a Multiclass Hardware-Friendly Support Vector Machine. Lecture Notes in Computer Science, 2012, , 216-223.	1.3	540
82	In-sample Model Selection for Trimmed Hinge Loss Support Vector Machine. Neural Processing Letters, 2012, 36, 275-283.	3.2	17
83	Test error bounds for classifiers: A survey of old and new results. , 2011, , .		6
84	In-sample model selection for Support Vector Machines. , 2011, , .		20
85	Selecting the hypothesis space for improving the generalization ability of Support Vector Machines. , 2011, , .		20
86	Optical wireless underwater communication for AUV: Preliminary simulation and experimental results. , 2011, , .		47
87	A FPGA CORE GENERATOR FOR EMBEDDED CLASSIFICATION SYSTEMS. Journal of Circuits, Systems and Computers, 2011, 20, 263-282.	1.5	27
88	Maximal Discrepancy for Support Vector Machines. Neurocomputing, 2011, 74, 1436-1443.	5.9	17
89	Model selection for support vector machines: Advantages and disadvantages of the Machine Learning Theory. , 2010, , .		62
90	Using Unsupervised Analysis to Constrain Generalization Bounds for Support Vector Classifiers. IEEE Transactions on Neural Networks, 2010, 21, 424-438.	4.2	20

#	Article	IF	CITATIONS
91	Nature-inspired learning and adaptive systems. Natural Computing, 2009, 8, 197-198.	3.0	1
92	Building an Underwater Wireless Sensor Network Based on Optical: Communication: Research Challenges and Current Results. , 2009, , .		46
93	Optical communication for Underwater Wireless Sensor Networks: a VHDL-implementation of a Physical Layer 802.15.4 compatible. , 2009, , .		2
94	A support vector machine with integer parameters. Neurocomputing, 2008, 72, 480-489.	5.9	38
95	Using Variable Neighborhood Search to improve the Support Vector Machine performance in embedded automotive applications. , 2008, , .		6
96	Smart Plankton: a Nature Inspired Underwater Wireless Sensor Network. , 2008, , .		6
97	A learning machine for resource-limited adaptive hardware. , 2007, , .		7
98	A Hardware-friendly Support Vector Machine for Embedded Automotive Applications. Neural Networks (IJCNN), International Joint Conference on, 2007, , .	0.0	38
99	Feed-Forward Support Vector Machine Without Multipliers. IEEE Transactions on Neural Networks, 2006, 17, 1328-1331.	4.2	57
100	Nature Inspiration for Support Vector Machines. Lecture Notes in Computer Science, 2006, , 442-449.	1.3	2
101	Data Mining Tools: From Web to Grid Architectures. Lecture Notes in Computer Science, 2005, , 620-629.	1.3	0
102	Digital Least Squares Support Vector Machines. Neural Processing Letters, 2003, 18, 65-72.	3.2	6
103	Neural network learning for analog VLSI implementations of support vector machines: a survey. Neurocomputing, 2003, 55, 265-283.	5.9	9
104	Hyperparameter design criteria for support vector classifiers. Neurocomputing, 2003, 55, 109-134.	5.9	50
105	Quantum optimization for training support vector machines. Neural Networks, 2003, 16, 763-770.	5.9	75
106	A Learning-Machine Based Method for the Simulation of Combustion Process in Automotive I.C. Engines. , 2003, , 595.		7
107	Automatic Hyperparameter Tuning for Support Vector Machines. Lecture Notes in Computer Science, 2002, , 1345-1350.	1.3	5
108	Evaluating the Generalization Ability of Support Vector Machines through the Bootstrap. Neural Processing Letters, 2000, 11, 51-58.	3.2	43

#	Article	lF	CITATIONS
109	RAIN: Redundant array of inexpensive workstations for neurocomputing. Lecture Notes in Computer Science, 1997, , 1340-1345.	1.3	0
110	Mixing floating- and fixed-point formats for neural network learning on neuroprocessors. Microprocessing and Microprogramming, 1996, 41, 757-769.	0.2	10
111	Neural structures for visual motion tracking. Machine Vision and Applications, 1995, 8, 275-288.	2.7	4
112	A heterogeneous and reconfigurable machine-vision system. Machine Vision and Applications, 1995, 8, 343-350.	2.7	4
113	Neural structures for visual motion tracking. Machine Vision and Applications, 1995, 8, 275-288.	2.7	10
114	A heterogeneous and reconfigurable machine-vision system. Machine Vision and Applications, 1995, 8, 343-350.	2.7	3
115	Associative structures for vision. Multidimensional Systems and Signal Processing, 1994, 5, 75-96.	2.6	6
116	Prospects and Problems of Optical Diffuse Wireless Communication for Underwater Wireless Sensor Networks. , 0, , .		11