
Minseong Ko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12079001/publications.pdf Version: 2024-02-01

MINSFONG KO

#	Article	IF	CITATIONS
1	Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nature Energy, 2016, 1, .	39.5	563
2	Metal (Ni, Co)â€Metal Oxides/Graphene Nanocomposites as Multifunctional Electrocatalysts. Advanced Functional Materials, 2015, 25, 5799-5808.	14.9	490
3	Confronting Issues of the Practical Implementation of Si Anode in High-Energy Lithium-Ion Batteries. Joule, 2017, 1, 47-60.	24.0	329
4	Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes. Nature Communications, 2017, 8, 812.	12.8	274
5	Challenges in Accommodating Volume Change of Si Anodes for Liâ€ l on Batteries. ChemElectroChem, 2015, 2, 1645-1651.	3.4	204
6	A Novel Surface Treatment Method and New Insight into Discharge Voltage Deterioration for Highâ€Performance 0.4Li ₂ MnO _{3–} 0.6LiNi _{1/3} Co _{1/3} Mn _{1/3} O _{ Cathode Materials. Advanced Energy Materials, 2014, 4, 1400631.}	2	196
7	Elastic <i>a</i> -Silicon Nanoparticle Backboned Graphene Hybrid as a Self-Compacting Anode for High-Rate Lithium Ion Batteries. ACS Nano, 2014, 8, 8591-8599.	14.6	180
8	Micron-sized Fe–Cu–Si ternary composite anodes for high energy Li-ion batteries. Energy and Environmental Science, 2016, 9, 1251-1257.	30.8	147
9	Superior Long-Term Energy Retention and Volumetric Energy Density for Li-Rich Cathode Materials. Nano Letters, 2014, 14, 5965-5972.	9.1	145
10	Etched Graphite with Internally Grown Si Nanowires from Pores as an Anode for High Density Li-Ion Batteries. Nano Letters, 2013, 13, 3403-3407.	9.1	120
11	Lithium reaction mechanism and high rate capability of VS ₄ –graphene nanocomposite as an anode material for lithium batteries. Journal of Materials Chemistry A, 2014, 2, 10847-10853.	10.3	118
12	Robust Pitch on Silicon Nanolayer–Embedded Graphite for Suppressing Undesirable Volume Expansion. Advanced Energy Materials, 2019, 9, 1803121.	19.5	107
13	Oneâ€ŧoâ€One Comparison of Graphiteâ€Blended Negative Electrodes Using Silicon Nanolayerâ€Embedded Graphite versus Commercial Benchmarking Materials for Highâ€Energy Lithiumâ€Ion Batteries. Advanced Energy Materials, 2017, 7, 1700071.	19.5	100
14	Towards maximized volumetric capacity via pore-coordinated design for large-volume-change lithium-ion battery anodes. Nature Communications, 2019, 10, 475.	12.8	79
15	Considering Critical Factors of Liâ€rich Cathode and Si Anode Materials for Practical Liâ€ion Cell Applications. Small, 2015, 11, 4058-4073.	10.0	67
16	Hollow Silicon Nanostructures via the Kirkendall Effect. Nano Letters, 2015, 15, 6914-6918.	9.1	67
17	Novel design of ultra-fast Si anodes for Li-ion batteries: crystalline Si@amorphous Si encapsulating hard carbon. Nanoscale, 2014, 6, 10604-10610.	5.6	40
18	Silicon as the Anode Material for Multivalent-Ion Batteries: A First-Principles Dynamics Study. ACS Applied Materials & Interfaces, 2020, 12, 55746-55755.	8.0	12

MINSEONG KO

#	Article	IF	CITATIONS
19	Exploring the correlation between MoS2 nanosheets and 3D graphene-based nanostructures for reversible lithium storage. Applied Surface Science, 2018, 459, 98-104.	6.1	11
20	Cathode Materials: A Novel Surface Treatment Method and New Insight into Discharge Voltage Deterioration for Highâ€Performance 0.4Li ₂ MnO _{3–} 0.6LiNi _{1/3} Co _{1/3} Mn _{1/3} O _{2 Cathode Materials (Adv. Energy Mater. 16/2014). Advanced Energy Materials, 2014, 4, .}	2	5
21	Tailored electrostrain and related properties in (1Ââ^`ÂÂ <i>x</i>)BaTiO ₃ – <i>x</i> SrSnO ₃ Pbâ€free electroceramics. Journal of the American Ceramic Society, 2022, 105, 5751-5763.	3.8	3