

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12078249/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Influence of pseudo-gap and interlayer coupling on isotope effect in bilayer cuprate superconductors. Physica C: Superconductivity and Its Applications, 2021, 587, 1353895.	1.2	3
2	Study of inter-band pair transfer and density of states on isotope effect in TTF[Ni (dmit)2]2 organic superconductor. Physica C: Superconductivity and Its Applications, 2020, 571, 1353591.	1.2	1
3	Tunneling conductance in superconductor-hybrid double quantum dots Josephson junction. AIP Conference Proceedings, 2018, , .	0.4	0
4	Influence of multiorbital and anisotropic Coulomb interactions on isotope effect coefficient in doped Fe-based superconductors. Physica C: Superconductivity and Its Applications, 2017, 537, 17-22.	1.2	3
5	Influence of Multi-orbitals, Coulomb Correlations and Hund's Coupling on Transition Temperature in Doped Fe-Based Superconductors. Journal of Superconductivity and Novel Magnetism, 2016, 29, 67-77.	1.8	1
6	Influence of multi-orbital hopping and anisotropy in intra and inter orbital Coulomb interactions on the electronic spectra in iron pnictide superconductors. Physica C: Superconductivity and Its Applications, 2015, 510, 31-41.	1.2	3
7	Influence of interlayer coupling and intra-layer Coulomb interaction on electronic transport in bilayer graphene. Current Applied Physics, 2015, 15, 1205-1215.	2.4	1
8	Tunable Josephson supercurrent through a two level quantum dot superconductor tunnel junction. Journal of Computational Electronics, 2015, 14, 139-145.	2.5	2
9	Quasi-particle spectrum in trilayer graphene: Role of onsite coulomb interaction and interlayer coupling. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 65, 36-43.	2.7	0
10	Single particle spectral function in iron pnictide superconductors within two band model. , 2014, , .		0
11	Electronic spectrum of trilayer graphene. Indian Journal of Physics, 2014, 88, 813-829.	1.8	2
12	Tunable Josephson effect in hybrid parallel coupled double quantum dot-superconductor tunnel junction. Superlattices and Microstructures, 2014, 73, 193-202.	3.1	11
13	Quasi-particle dispersion and density of states in superconducting state of iron pnictide system. Materials Express, 2014, 4, 400-414.	0.5	2
14	Electronic Spectra of Iron Pnictide Superconductors: Influence of Multi-orbitals Hopping and Hund's Coupling. Journal of Superconductivity and Novel Magnetism, 2013, 26, 527-538.	1.8	5
15	Quasi-particle spectrum and density of electronic states in AA- and AB-stacked bilayer graphene. European Physical Journal B, 2013, 86, 1.	1.5	7
16	Electronic Spectral Function of Monolayer and Bilayer Graphene Nanostructures. Journal of Computational and Theoretical Nanoscience, 2013, 10, 2161-2173.	0.4	3
17	Influence of C-Axis Inter Unit Cell Resonant Tunneling on the Spectral Function in Bilayer Cuprates. Journal of Modern Physics, 2011, 02, 759-765.	0.6	1
18	Study of the Josephson supercurrent through nanoscopic superconducting-quantum dot tunnel junction. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1179-1183.	2.7	7

Ajay

#	Article	IF	CITATIONS
19	Interplay of the single particle and Josephson Cooper pair tunneling on supercurrent across the superconducting quantum dot junction. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 42, 162-166.	2.7	6
20	Influence of three site exchange interaction on the electronic spectra of doped bilayer high Tc cuprates. Physica C: Superconductivity and Its Applications, 2008, 468, 237-243.	1.2	3
21	Influence of inter cell resonant tunneling on the out-of-plane electronic transport behavior in layered high Tc cuprates. European Physical Journal B, 2008, 66, 67-74.	1.5	2
22	Interplay of single particle and Josephson Cooper pair tunnelings on the electronic spectra of bilayer cuprate superconductors. Physica C: Superconductivity and Its Applications, 2007, 455, 46-51.	1.2	2
23	Electronic spectra of doped bilayer high Tc cuprates within t–t′–t″–t⊥–U model. Physica C: Superconductivity and Its Applications, 2006, 444, 31-39.	1.2	1
24	Spectral properties of doped bilayer high Tc cuprates: Role of intra-bilayer coupling. Physica C: Superconductivity and Its Applications, 2005, 423, 127-136.	1.2	3
25	Electronic spectra of optimal doped bilayer and trilayer high-Tc cuprate superconductors. Physica C: Superconductivity and Its Applications, 2005, 423, 137-151.	1.2	3
26	Role of interlayer coupling on the isotope effect in layered high-Tc cuprate superconductors. Physica C: Superconductivity and Its Applications, 2004, 415, 145-149.	1.2	2
27	Temperature dependence of the supercurrent density in bilayer cuprate superconductors. Physica C: Superconductivity and Its Applications, 2003, 383, 388-394.	1.2	4
28	Condensation energy of the superconducting bilayer cuprates. Pramana - Journal of Physics, 2002, 58, 861-866.	1.8	0
29	Role of Cu d–d inter-orbital electron correlation on the out-of-plane conduction in cuprates. Physica C: Superconductivity and Its Applications, 2002, 371, 139-145.	1.2	3
30	Interplay of single particle and Cooper pair tunnelings on the superconducting state of layered high-Tc cuprates. Physica C: Superconductivity and Its Applications, 2001, 353, 289-296.	1.2	7
31	Temperature dependence of magnetization and optical magnon gap in bilayer antiferromagnetic YBa2Cu3O6. Physica C: Superconductivity and Its Applications, 2001, 355, 31-38.	1.2	9
32	Role of Dipole-Dipole Interaction on the Magnetic Dynamics of Anisotropic Layered Cuprate Antiferromagnets. Physica Status Solidi (B): Basic Research, 2001, 226, 193-202.	1.5	4
33	Superconducting properties of bilayer cuprates: role of CuO chains. Physica C: Superconductivity and Its Applications, 2000, 334, 215-228.	1.2	2
34	Bilayer exchange coupling and neel temperature of YBa2Cu3O6.2. Pramana - Journal of Physics, 2000, 54, 423-429.	1.8	0
35	Role of interlayer coupling in the superconducting state of layered cuprate superconductors. Physica C: Superconductivity and Its Applications, 1999, 316, 267-272.	1.2	6
36	Thermodynamic properties of bilayer cuprate superconductors. Physica C: Superconductivity and Its Applications, 1999, 323, 42-50.	1.2	8

Ajay

#	Article	IF	CITATIONS
37	Study of doping-dependent shift in the chemical potential of high Tc cuprates by t–t′–J model. Physica C: Superconductivity and Its Applications, 1999, 325, 201-209.	1.2	3
38	Spin wave contribution to the thermal expansion of high-Tc cuprate superconductors. Physica C: Superconductivity and Its Applications, 1998, 294, 270-274.	1.2	6
39	Model forc-axis resistivity of cuprate superconductors. Physical Review B, 1998, 57, 6126-6136.	3.2	17
40	Role of interlayer interactions on transition temperature in high-Tc cuprate superconductors. Physica C: Superconductivity and Its Applications, 1997, 274, 73-80.	1.2	16
41	Effect of interlayer coupling on Néel, temperature in copper oxide based antiferromagnets. Physica Status Solidi (B): Basic Research, 1995, 188, 787-793.	1.5	9
42	Effect of an interband interaction on narrow-band superconductivity. Physical Review B, 1995, 51, 12658-12664.	3.2	5