Henri J Huttunen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12076821/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cerebral dopamine neurotrophic factor reduces α-synuclein aggregation and propagation and alleviates behavioral alterations inÂvivo. Molecular Therapy, 2021, 29, 2821-2840.	8.2	26
2	The interaction of α-synuclein and Tau: A molecular conspiracy in neurodegeneration?. Seminars in Cell and Developmental Biology, 2020, 99, 55-64.	5.0	35
3	Mechanisms of secretion and spreading of pathological tau protein. Cellular and Molecular Life Sciences, 2020, 77, 1721-1744.	5.4	174
4	The Cell Biology of Tau Secretion. Frontiers in Molecular Neuroscience, 2020, 13, 569818.	2.9	28
5	GDNF and Parkinson's Disease: Where Next? A Summary from a Recent Workshop. Journal of Parkinson's Disease, 2020, 10, 875-891.	2.8	63
6	Live-cell monitoring of protein localization to membrane rafts using protein-fragment complementation. Bioscience Reports, 2020, 40, .	2.4	19
7	CDNF Protein Therapy in Parkinson's Disease. Cell Transplantation, 2019, 28, 349-366.	2.5	60
8	Secretion of Tau via an Unconventional Non-vesicular Mechanism. Cell Reports, 2018, 25, 2027-2035.e4.	6.4	117
9	Plasma etched carbon microelectrode arrays for bioelectrical measurements. Diamond and Related Materials, 2018, 90, 126-134.	3.9	3
10	Inhibition of Homophilic Interactions and Ligand Binding of the Receptor for Advanced Glycation End Products by Heparin and Heparin-Related Carbohydrate Structures. Medicines (Basel, Switzerland), 2018, 5, 79.	1.4	4
11	Melatonin receptor type 1A gene linked to Alzheimer's disease in old age. Sleep, 2018, 41, .	1.1	30
12	Intrastriatally Infused Exogenous CDNF Is Endocytosed and Retrogradely Transported to Substantia Nigra. ENeuro, 2017, 4, ENEURO.0128-16.2017.	1.9	32
13	Axonal Kainate Receptors Modulate the Strength of Efferent Connectivity by Regulating Presynaptic Differentiation. Frontiers in Cellular Neuroscience, 2016, 10, 3.	3.7	22
14	Internalized Tau sensitizes cells to stress by promoting formation and stability of stress granules. Scientific Reports, 2016, 6, 30498.	3.3	62
15	FRMD4A-cytohesin signaling modulates cellular release of Tau. Journal of Cell Science, 2016, 129, 2003-15.	2.0	27
16	Stress-induced upregulation of VLDL receptor alters Wnt-signaling in neurons. Experimental Cell Research, 2016, 340, 238-247.	2.6	18
17	Prolyl Oligopeptidase Enhances α-Synuclein Dimerization via Direct Protein-Protein Interaction. Journal of Biological Chemistry, 2015, 290, 5117-5126.	3.4	56
18	Transcriptomics and mechanistic elucidation of Alzheimer's disease risk genes in the brain and inÂvitro models. Neurobiology of Aging, 2015, 36, 1221.e15-1221.e28.	3.1	55

Henri J Huttunen

#	Article	IF	CITATIONS
19	Asymmetric Genetic Manipulation and Patch Clamp Recording of Neurons in a Microfluidic Chip. Neuromethods, 2015, , 59-81.	0.3	1
20	Amyloid precursor protein α―and βâ€cleaved ectodomains exert opposing control of cholesterol homeostasis <i>via</i> SREBP2. FASEB Journal, 2014, 28, 849-860.	0.5	20
21	Multiplex Assay for Live-Cell Monitoring of Cellular Fates of Amyloid-β Precursor Protein (APP). PLoS ONE, 2014, 9, e98619.	2.5	11
22	Mitochondria and NMDA Receptor-Dependent Toxicity of Berberine Sensitizes Neurons to Glutamate and Rotenone Injury. PLoS ONE, 2014, 9, e107129.	2.5	47
23	Microtechnologies to fuel neurobiological research with nanometer precision. Journal of Nanobiotechnology, 2013, 11, 11.	9.1	19
24	A microfluidic chip for axonal isolation and electrophysiological measurements. Journal of Neuroscience Methods, 2013, 212, 276-282.	2.5	25
25	Î ³ -Aminobutyric Acid Type A (GABAA) Receptor Activation Modulates Tau Phosphorylation. Journal of Biological Chemistry, 2012, 287, 6743-6752.	3.4	36
26	Expression of GluK1c underlies the developmental switch in presynaptic kainate receptor function. Scientific Reports, 2012, 2, 310.	3.3	39
27	PCSK9 regulates neuronal apoptosis by adjusting ApoER2 levels and signaling. Cellular and Molecular Life Sciences, 2012, 69, 1903-1916.	5.4	106
28	The Acyl-Coenzyme A: Cholesterol Acyltransferase Inhibitor Cl-1011 Reverses Diffuse Brain Amyloid Pathology in Aged Amyloid Precursor Protein Transgenic Mice. Journal of Neuropathology and Experimental Neurology, 2010, 69, 777-788.	1.7	50
29	Inhibition of acylâ€coenzyme A: cholesterol acyl transferase modulates amyloid precursor protein trafficking in the early secretory pathway. FASEB Journal, 2009, 23, 3819-3828.	0.5	49
30	Novel N-terminal Cleavage of APP Precludes AÎ ² Generation in ACAT-Defective AC29 Cells. Journal of Molecular Neuroscience, 2009, 37, 6-15.	2.3	23
31	ACAT as a Drug Target for Alzheimer's Disease. Neurodegenerative Diseases, 2008, 5, 212-214.	1.4	42
32	HtrA2 Regulates β-Amyloid Precursor Protein (APP) Metabolism through Endoplasmic Reticulum-associated Degradation. Journal of Biological Chemistry, 2007, 282, 28285-28295.	3.4	64
33	Knockdown of ACATâ€1 reduces amyloidogenic processing of APP. FEBS Letters, 2007, 581, 1688-1692.	2.8	49
34	Cholesterol and β-Amyloid. , 2007, , 93-111.		1
35	The ACAT Inhibitor CP-113,818 Markedly Reduces Amyloid Pathology in a Mouse Model of Alzheimer's Disease. Neuron, 2004, 44, 227-238.	8.1	249
36	Receptor for Advanced Glycation End Products (RAGE) Signaling Induces CREB-dependent Chromogranin Expression during Neuronal Differentiation. Journal of Biological Chemistry, 2002, 277, 38635-38646.	3.4	152

Henri J Huttunen

#	Article	IF	CITATIONS
37	N-Glycans on the receptor for advanced glycation end products influence amphoterin binding and neurite outgrowth. Journal of Neurochemistry, 2002, 80, 998-1008.	3.9	119
38	Receptor for advanced glycation end products-binding COOH-terminal motif of amphoterin inhibits invasive migration and metastasis. Cancer Research, 2002, 62, 4805-11.	0.9	205
39	Coregulation of Neurite Outgrowth and Cell Survival by Amphoterin and S100 Proteins through Receptor for Advanced Glycation End Products (RAGE) Activation. Journal of Biological Chemistry, 2000, 275, 40096-40105.	3.4	516
40	Heparin-binding proteins HB-GAM (pleiotrophin) and amphoterin in the regulation of cell motility. Matrix Biology, 2000, 19, 377-387.	3.6	139
41	Receptor for Advanced Glycation End Products (RAGE)-mediated Neurite Outgrowth and Activation of NF-κB Require the Cytoplasmic Domain of the Receptor but Different Downstream Signaling Pathways. Journal of Biological Chemistry, 1999, 274, 19919-19924.	3.4	570