Gang Hee Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12076105/publications.pdf

Version: 2024-02-01

69 8,691 45
papers citations h-index

70 70 70 14069
all docs docs citations times ranked citing authors

67

g-index

#	Article	IF	Citations
1	Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today, 2017, 20, 116-130.	14.2	1,852
2	Synthesis of Largeâ€Area Graphene Layers on Polyâ€Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation. Advanced Materials, 2009, 21, 2328-2333.	21.0	814
3	Influence of Copper Morphology in Forming Nucleation Seeds for Graphene Growth. Nano Letters, 2011, 11, 4144-4148.	9.1	373
4	Probing graphene grain boundaries with optical microscopy. Nature, 2012, 490, 235-239.	27.8	352
5	Layer-by-Layer Doping of Few-Layer Graphene Film. ACS Nano, 2010, 4, 4595-4600.	14.6	293
6	Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations. Nature Communications, 2015, 6, 6128.	12.8	259
7	van der Waals Metallic Transition Metal Dichalcogenides. Chemical Reviews, 2018, 118, 6297-6336.	47.7	252
8	Control of Electronic Structure of Graphene by Various Dopants and Their Effects on a Nanogenerator. Journal of the American Chemical Society, 2010, 132, 15603-15609.	13.7	247
9	Fano Resonance and Spectrally Modified Photoluminescence Enhancement in Monolayer MoS ₂ Integrated with Plasmonic Nanoantenna Array. Nano Letters, 2015, 15, 3646-3653.	9.1	246
10	Heat Dissipation of Transparent Graphene Defoggers. Advanced Functional Materials, 2012, 22, 4819-4826.	14.9	238
11	Biexciton Emission from Edges and Grain Boundaries of Triangular WS ₂ Monolayers. ACS Nano, 2016, 10, 2399-2405.	14.6	220
12	Large Work Function Modulation of Monolayer MoS ₂ by Ambient Gases. ACS Nano, 2016, 10, 6100-6107.	14.6	188
13	Contact resistance between metal and carbon nanotube interconnects: Effect of work function and wettability. Applied Physics Letters, 2009, 95, .	3.3	184
14	Misorientation-angle-dependent electrical transport across molybdenum disulfide grain boundaries. Nature Communications, 2016, 7, 10426.	12.8	172
15	Continuous Growth of Hexagonal Graphene and Boron Nitride In-Plane Heterostructures by Atmospheric Pressure Chemical Vapor Deposition. ACS Nano, 2013, 7, 10129-10138.	14.6	170
16	Synthesis of Centimeter-Scale Monolayer Tungsten Disulfide Film on Gold Foils. ACS Nano, 2015, 9, 5510-5519.	14.6	166
17	Small Hysteresis Nanocarbon-Based Integrated Circuits on Flexible and Transparent Plastic Substrate. Nano Letters, 2011, 11, 1344-1350.	9.1	142
18	Frictional Behavior of Atomically Thin Sheets: Hexagonal-Shaped Graphene Islands Grown on Copper by Chemical Vapor Deposition. ACS Nano, 2014, 8, 5010-5021.	14.6	136

#	Article	IF	Citations
19	Scalable Production of Highly Sensitive Nanosensors Based on Graphene Functionalized with a Designed G Protein-Coupled Receptor. Nano Letters, 2014, 14, 2709-2714.	9.1	105
20	Photochemical Reaction in Monolayer MoS ₂ <i>via</i> Correlated Photoluminescence, Raman Spectroscopy, and Atomic Force Microscopy. ACS Nano, 2016, 10, 5230-5236.	14.6	101
21	Stranski–Krastanov and Volmer–Weber CVD Growth Regimes To Control the Stacking Order in Bilayer Graphene. Nano Letters, 2016, 16, 6403-6410.	9.1	95
22	Laser Thinning for Monolayer Graphene Formation: Heat Sink and Interference Effect. ACS Nano, 2011, 5, 263-268.	14.6	94
23	Characterization of the structural defects in CVD-grown monolayered MoS ₂ using near-field photoluminescence imaging. Nanoscale, 2015, 7, 11909-11914.	5 . 6	92
24	Semiconductor–Insulator–Semiconductor Diode Consisting of Monolayer MoS ₂ , h-BN, and GaN Heterostructure. ACS Nano, 2015, 9, 10032-10038.	14.6	88
25	Thickness-dependent in-plane thermal conductivity of suspended MoS ₂ grown by chemical vapor deposition. Nanoscale, 2017, 9, 2541-2547.	5 . 6	86
26	Transferâ€Free Growth of Fewâ€Layer Graphene by Selfâ€Assembled Monolayers. Advanced Materials, 2011, 23, 4392-4397.	21.0	79
27	Electron Excess Doping and Effective Schottky Barrier Reduction on the MoS ₂ / <i>h</i> hHeterostructure. Nano Letters, 2016, 16, 6383-6389.	9.1	78
28	Metal–Insulator–Semiconductor Diode Consisting of Two-Dimensional Nanomaterials. Nano Letters, 2016, 16, 1858-1862.	9.1	74
29	Optical Gain in MoS ₂ <i>via</i> Coupling with Nanostructured Substrate: Fabry–Perot Interference and Plasmonic Excitation. ACS Nano, 2016, 10, 8192-8198.	14.6	69
30	Vertically Conductive MoS ₂ Spiral Pyramid. Advanced Materials, 2016, 28, 7723-7728.	21.0	63
31	Simultaneous Hosting of Positive and Negative Trions and the Enhanced Direct Band Emission in MoSe ₂ /MoS ₂ Heterostacked Multilayers. ACS Nano, 2016, 10, 6211-6219.	14.6	62
32	Graphene/Substrate Charge Transfer Characterized by Inverse Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2010, 114, 21618-21624.	3.1	61
33	Two-dimensional membrane as elastic shell with proof on the folds revealed by three-dimensional atomic mapping. Nature Communications, 2015, 6, 8935.	12.8	59
34	Visualizing Point Defects in Transition-Metal Dichalcogenides Using Optical Microscopy. ACS Nano, 2016, 10, 770-777.	14.6	58
35	Junction-Structure-Dependent Schottky Barrier Inhomogeneity and Device Ideality of Monolayer MoS ₂ Field-Effect Transistors. ACS Applied Materials & Interfaces, 2017, 9, 11240-11246.	8.0	57
36	Load-Dependent Friction Hysteresis on Graphene. ACS Nano, 2016, 10, 5161-5168.	14.6	56

#	Article	IF	CITATIONS
37	Role of alkali metal promoter in enhancing lateral growth of monolayer transition metal dichalcogenides. Nanotechnology, 2017, 28, 36LT01.	2.6	56
38	Selective Amplification of the Primary Exciton in a <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Mo</mml:mi><mml:msub><mml:mi mathvariant="normal">S</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> Monolayer. Physical Review Letters, 2015, 115, 226801.	7.8	54
39	LARGE-AREA GRAPHENE-BASED FLEXIBLE TRANSPARENT CONDUCTING FILMS. Nano, 2009, 04, 83-90.	1.0	50
40	Efficient Exciton–Plasmon Conversion in Ag Nanowire/Monolayer MoS ₂ Hybrids: Direct Imaging and Quantitative Estimation of Plasmon Coupling and Propagation. Advanced Optical Materials, 2015, 3, 943-947.	7.3	48
41	Spectroscopic Visualization of Grain Boundaries of Monolayer Molybdenum Disulfide by Stacking Bilayers. ACS Nano, 2015, 9, 11042-11048.	14.6	47
42	Enhanced Light Emission from Monolayer Semiconductors by Forming Heterostructures with ZnO Thin Films. ACS Applied Materials & Samp; Interfaces, 2016, 8, 28809-28815.	8.0	47
43	Edge Contact for Carrier Injection and Transport in MoS ₂ Field-Effect Transistors. ACS Nano, 2019, 13, 13169-13175.	14.6	47
44	DNA-decorated graphene nanomesh for detection of chemical vapors. Applied Physics Letters, 2013, 103, 183110.	3.3	45
45	Scalable arrays of chemical vapor sensors based on DNA-decorated graphene. Nano Research, 2014, 7, 95-103.	10.4	45
46	Near-field spectral mapping of individual exciton complexes of monolayer WS ₂ correlated with local defects and charge population. Nanoscale, 2017, 9, 2272-2278.	5. 6	44
47	Synthesis of Edge-Closed Graphene Ribbons with Enhanced Conductivity. ACS Nano, 2010, 4, 5480-5486.	14.6	41
48	Modulating Electronic Properties of Monolayer MoS ₂ <i>via</i> Electron-Withdrawing Functional Groups of Graphene Oxide. ACS Nano, 2016, 10, 10446-10453.	14.6	41
49	Observation of Charge Transfer in Heterostructures Composed of MoSe ₂ Quantum Dots and a Monolayer of MoS ₂ or WSe ₂ . Journal of Physical Chemistry C, 2017, 121, 1997-2004.	3.1	41
50	Graphene/Carbon Nanotube Hybridâ€Based Transparent 2D Optical Array. Advanced Materials, 2011, 23, 3809-3814.	21.0	37
51	Understanding Coulomb Scattering Mechanism in Monolayer MoS ₂ Channel in the Presence of <i>h</i> h-BN Buffer Layer. ACS Applied Materials & Samp; Interfaces, 2017, 9, 5006-5013.	8.0	37
52	UV-LIGHT-ASSISTED OXIDATIVE sp3 HYBRIDIZATION OF GRAPHENE. Nano, 2011, 06, 409-418.	1.0	36
53	POLY(ETHYLENE CO-VINYL ACETATE)-ASSISTED ONE-STEP TRANSFER OF ULTRA-LARGE GRAPHENE. Nano, 2011, 06, 59-65.	1.0	35
54	Integrated Freestanding Twoâ€dimensional Transition Metal Dichalcogenides. Advanced Materials, 2017, 29, 1700308.	21.0	33

#	Article	IF	CITATIONS
55	Absorption dichroism of monolayer 1T′-MoTe ₂ in visible range. 2D Materials, 2016, 3, 031010.	4.4	32
56	Simple Chemical Treatment to n-Dope Transition-Metal Dichalcogenides and Enhance the Optical and Electrical Characteristics. ACS Applied Materials & Samp; Interfaces, 2017, 9, 11950-11958.	8.0	31
57	Band-gap engineering in chemically conjugated bilayer graphene: <i>Ab initio</i> calculations. Physical Review B, 2012, 85, .	3.2	29
58	Soft Coulomb gap and asymmetric scaling towards metal-insulator quantum criticality in multilayer MoS2. Nature Communications, 2018, 9, 2052.	12.8	27
59	Optical Arrays: Graphene/Carbon Nanotube Hybrid-Based Transparent 2D Optical Array (Adv. Mater.) Tj ETQq1 1	0.784314 21.0	rgBT Over
60	Dependence of Raman and absorption spectra of stacked bilayer MoS_2 on the stacking orientation. Optics Express, 2016, 24, 21551.	3.4	18
61	CRITERIA FOR PRODUCING YARNS FROM VERTICALLY ALIGNED CARBON NANOTUBES. Nano, 2010, 05, 31-38.	1.0	14
62	Anomalous Conductance near Percolative Metal–Insulator Transition in Monolayer MoS2 at Low Voltage Regime. ACS Nano, 2019, 13, 6631-6637.	14.6	11
63	Quantum critical scaling for finite-temperature Mott-like metal-insulator crossover in few-layered <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>MoS</mml:mi><mml 102<="" 2020,="" b.="" physical="" review="" td=""><td>l:m3122<td>nml:mn></td></td></mml></mml:msub></mml:mrow></mml:math 	l:m3122 <td>nml:mn></td>	nml:mn>
64	Low-temperature graphene growth using epochal catalyst of PdCo alloy. Applied Physics Letters, 2011, 99, .	3.3	9
65	Efficient Synthesis of Individual Single-Walled Carbon Nanotube by Water-Based Catalyst with Poly(vinylpyrrolidone). Journal of Nanoscience and Nanotechnology, 2008, 8, 329-334.	0.9	6
66	Locally enhanced light–matter interaction of MoS2 monolayers at density-controllable nanogrooves of template-stripped Ag films. Current Applied Physics, 2022, 33, 59-65.	2.4	6
67	Synthesis of large-area graphene layers on nickel film by chemical vapor deposition: wrinkle formation. Proceedings of SPIE, 2009, , .	0.8	4
68	Schottky barrier engineering in carbon nanotube with various metal electrodes. , 2007, , .		3
69	MoS <inf>2</inf> monolayers for propagating plasmon emitter and detector in long range. , 2015, , .		0