
## Ulf Wahlgren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12067875/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                       | IF              | CITATIONS        |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------|
| 1  | Probing the Nature of Chemical Bonding in Uranyl(VI) Complexes with Quantum Chemical Methods.<br>Journal of Physical Chemistry A, 2012, 116, 12373-12380.                                                                                                                                                                     | 2.5             | 113              |
| 2  | Effects of the first hydration sphere and the bulk solvent on the spectra of the f2isoelectronic<br>actinide compounds: U4+, NpO2+, and PuO22+. Physical Chemistry Chemical Physics, 2010, 12, 1116-1130.                                                                                                                     | 2.8             | 26               |
| 3  | Charge Transfer in Uranyl(VI) Halides [UO <sub>2</sub> X <sub>4</sub> ] <sup>2â^'</sup> (X = F, Cl, Br,) Tj ETQq1<br>3615-3621.                                                                                                                                                                                               | 1 0.7843<br>2.5 | 14 rgBT /0<br>21 |
| 4  | On the universality of the long-/short-range separation in multiconfigurational density-functional theory. II. Investigating f actinide species. Journal of Chemical Physics, 2009, 131, 054107.                                                                                                                              | 3.0             | 49               |
| 5  | On the combined use of discrete solvent models and continuum descriptions of solvent effects in<br>ligand exchange reactions: a case study of the uranyl(VI) aquo ion. Theoretical Chemistry Accounts,<br>2009, 124, 377-384.                                                                                                 | 1.4             | 22               |
| 6  | Water Exchange Mechanism in the First Excited State of Hydrated Uranyl(VI). Inorganic Chemistry, 2009, 48, 11310-11313.                                                                                                                                                                                                       | 4.0             | 14               |
| 7  | An Investigation of the Accuracy of Different DFT Functionals on the Water Exchange Reaction in<br>Hydrated Uranyl(VI) in the Ground State and the First Excited State. Journal of Chemical Theory and<br>Computation, 2008, 4, 569-577.                                                                                      | 5.3             | 64               |
| 8  | Ab Initio Study of the Mechanism for Photoinduced Yl-Oxygen Exchange in Uranyl(VI) in Acidic<br>Aqueous Solution. Journal of the American Chemical Society, 2008, 130, 11742-11751.                                                                                                                                           | 13.7            | 28               |
| 9  | Theoretical investigation of the energies and geometries of photoexcited uranyl(VI) ion: A comparison between wave-function theory and density functional theory. Journal of Chemical Physics, 2007, 127, 214302.                                                                                                             | 3.0             | 75               |
| 10 | Comment on "The Waterâ€Exchange Mechanism of the<br>[UO <sub>2</sub> (OH <sub>2</sub> ) <sub>5</sub> ] <sup>2+</sup> Ion Revisited: The Importance of a<br>Proper Treatment of Electron Correlation―[F. P. Rotzinger <i>Chem. Eur. J.</i> , 2007, <i>13</i> , 800].<br>Chemistry - A European Journal, 2007, 13, 10294-10297. | 3.3             | 11               |
| 11 | A theoretical study of the fluoride exchange between UO2F+(aq) and UO22+(aq). Dalton Transactions, 2006, , 3638.                                                                                                                                                                                                              | 3.3             | 14               |
| 12 | Quantum Chemical Calculations of Reduction Potentials of AnO22+/AnO2+ (An = U, Np, Pu, Am) and Fe3+/Fe2+ Couples. Journal of Physical Chemistry A, 2006, 110, 9175-9182.                                                                                                                                                      | 2.5             | 71               |
| 13 | Actinide Chemistry in Solution, Quantum Chemical Methods and Models. Theoretical Chemistry Accounts, 2006, 115, 145-160.                                                                                                                                                                                                      | 1.4             | 114              |
| 14 | Electron Transfer in Neptunyl(VI)â^'Neptunyl(V) Complexes in Solution. Journal of Physical Chemistry A,<br>2005, 109, 4950-4956.                                                                                                                                                                                              | 2.5             | 11               |
| 15 | Spinâ^'Orbit Effects in Electron Transfer in Neptunyl(VI)â^'Neptunyl(V) Complexes in Solution. Journal of<br>Physical Chemistry A, 2005, 109, 4957-4960.                                                                                                                                                                      | 2.5             | 14               |
| 16 | The Mechanism of Water Exchange in AmO2(H2O)52+ and in the Isoelectronic UO2(H2O)5+ and<br>NpO2(H2O)52+ Complexes as Studied by Quantum Chemical Methods. Journal of the American Chemical<br>Society, 2004, 126, 7766-7767.                                                                                                  | 13.7            | 63               |
| 17 | Electron Transfer in Uranyl(VI)â^Uranyl(V) Complexes in Solution. Journal of the American Chemical<br>Society, 2004, 126, 9801-9808.                                                                                                                                                                                          | 13.7            | 37               |
| 18 | Ab Initio Studies of Np and Pu Complexes and Reactions in the Gas Phase:  Structures and Thermodynamics. Journal of Physical Chemistry A, 2003, 107, 9705-9711.                                                                                                                                                               | 2.5             | 21               |

| #  | Article                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The performance of density functional theory for LnF (Ln=Nd, Eu, Gd, Yb) and YbH. Theoretical Chemistry Accounts, 2003, 110, 118-125.                                                    | 1.4  | 41        |
| 20 | Structure and Bonding in Solution of Dioxouranium(VI) Oxalate Complexes:Â Isomers and<br>Intramolecular Ligand Exchange. Inorganic Chemistry, 2003, 42, 1982-1993.                       | 4.0  | 68        |
| 21 | Reduction of Uranyl(VI) by Iron(II) in Solutions:  An Ab Initio Study. Journal of Physical Chemistry A, 2003, 107, 587-592.                                                              | 2.5  | 24        |
| 22 | Mechanisms of Ligand Exchange Reactions, A Quantum Chemical Study of the Reaction UO22+(Aq) +<br>HF(Aq) → UO2F+(Aq) + H+(Aq). Journal of Physical Chemistry A, 2003, 107, 9456-9462.     | 2.5  | 12        |
| 23 | Chelate Effect and Thermodynamics of Metal Complex Formation in Solution:Â A Quantum Chemical<br>Study. Journal of the American Chemical Society, 2003, 125, 14941-14950.                | 13.7 | 78        |
| 24 | Rates and Mechanism of Fluoride and Water Exchange in UO2F53-and [UO2F4(H2O)]2-Studied by NMR<br>Spectroscopy and Wave Function Based Methods. Inorganic Chemistry, 2002, 41, 5626-5633. | 4.0  | 37        |
| 25 | Structure and Thermodynamics of Uranium(VI) Complexes in the Gas Phase: A Comparison of Experimental and ab Initio Data. Journal of Physical Chemistry A, 2002, 106, 11277-11282.        | 2.5  | 49        |
| 26 | The gas phase structures of tungsten chlorides: density functional theory calculations on WCl6,<br>WCl5, WCl4, WCl3 and W2Cl6 â€. Dalton Transactions RSC, 2001, , 1616-1620.            | 2.3  | 15        |
| 27 | Solvent Effects on Uranium(VI) Fluoride and Hydroxide Complexes Studied by EXAFS and Quantum Chemistry. Inorganic Chemistry, 2001, 40, 3516-3525.                                        | 4.0  | 138       |
| 28 | The Mechanism for Water Exchange in [UO2(H2O)5]2+and [UO2(oxalate)2(H2O)]2-, as Studied by Quantum Chemical Methods. Journal of the American Chemical Society, 2001, 123, 11999-12008.   | 13.7 | 123       |
| 29 | A theoretical study of the chemisorption of molecular hydrogen on a seven atom gold cluster.<br>Journal of Molecular Structure, 2001, 567-568, 137-143.                                  | 3.6  | 13        |
| 30 | Spin–orbit coupling within a two-component density functional theory approach: theory,<br>implementation and first applications. Chemical Physics Letters, 2001, 344, 207-212.           | 2.6  | 34        |
| 31 | Rates and Mechanisms of Water Exchange of UO22+(aq) and UO2(oxalate)F(H2O)2-:Â A<br>Variable-Temperature17O and19F NMR Study. Inorganic Chemistry, 2000, 39, 799-805.                    | 4.0  | 102       |
| 32 | Reduction of uranyl by hydrogen: an ab initio study. Chemical Physics, 1999, 244, 185-193.                                                                                               | 1.9  | 81        |
| 33 | Investigation of the low-lying excited states of PuO22+. Chemical Physics, 1999, 244, 195-201.                                                                                           | 1.9  | 42        |
| 34 | Reduction Behavior of the Early Actinyl Ions in Aqueous Solution. Journal of Physical Chemistry A,<br>1999, 103, 9285-9289.                                                              | 2.5  | 54        |
| 35 | On the efficiency of an effective Hamiltonian in spin-orbit CI calculations. Chemical Physics Letters, 1998, 286, 261-266.                                                               | 2.6  | 47        |
| 36 | On the combination of ECP-based CI calculations with all-electron spin-orbit mean-field integrals.<br>Chemical Physics Letters, 1998, 286, 267-271.                                      | 2.6  | 64        |

| #  | Article                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A local approximation for relativistic scalar operators applied to the uranyl ion and to Au2. Chemical<br>Physics Letters, 1998, 287, 525-530.                                      | 2.6 | 35        |
| 38 | Spin-orbit effects in the PtH+2 ion. Computational and Theoretical Chemistry, 1998, 451, 227-235.                                                                                   | 1.5 | 8         |
| 39 | Ab initio calculations of the \${} ^2{i P}_{{ 1}over { 2}} hbox{-}{} ^2{i P}_{{ 3} over { 2}} \$ splitting in the thallium atom. Theoretical Chemistry Accounts, 1997, 97, 324-330. | 1.4 | 30        |
| 40 | DFT and MO calculations of atomic and molecular chemisorption energies on surface cluster models.<br>Theoretica Chimica Acta, 1996, 94, 297-310.                                    | 0.8 | 19        |
| 41 | Chemisorption of hydrogen and oxygen atoms on a cobalt surface: A quantum chemical cluster model study. International Journal of Quantum Chemistry, 1996, 57, 105-111.              | 2.0 | 9         |
| 42 | A new mean-field and ECP-based spin-orbit method. Applications to Pt and PtH. Chemical Physics<br>Letters, 1996, 251, 357-364.                                                      | 2.6 | 131       |
| 43 | A mean-field spin-orbit method applicable to correlated wavefunctions. Chemical Physics Letters, 1996, 251, 365-371.                                                                | 2.6 | 1,008     |
| 44 | Calculations of hydrogen chemisorption energies on optimized copper clusters. Chemical Physics<br>Letters, 1995, 237, 550-559.                                                      | 2.6 | 39        |
| 45 | New relativistic effective core potentials for heavy elements. Chemical Physics, 1995, 201, 357-362.                                                                                | 1.9 | 35        |
| 46 | On the accuracy of gradient corrected density functional methods for transition metal complexes.<br>Journal of Chemical Physics, 1995, 102, 872-878.                                | 3.0 | 74        |
| 47 | Relativistic calculations on platinum hydride using effective core potentials and firstâ€order<br>perturbation theory. Journal of Chemical Physics, 1992, 96, 8363-8366.            | 3.0 | 19        |
| 48 | A theoretical study of atomic oxygen chemisorption on the Ni(100) and Ni(111) surfaces. International<br>Journal of Quantum Chemistry, 1992, 42, 1149-1169.                         | 2.0 | 46        |
| 49 | The Effective Core Potential Method. Lecture Notes in Quantum Chemistry II, 1992, , 413-421.                                                                                        | 0.3 | 3         |
| 50 | A Cluster Model for Reactions on Transition Metal Surfaces. , 1992, , 37-65.                                                                                                        |     | 2         |
| 51 | Chemisorption on Metal Surfaces. A Cluster Model Approach. Topics in Molecular Organization and Engineering, 1992, , 1-17.                                                          | 0.1 | 0         |
| 52 | Model Studies of Chemisorption on Platinum Surfaces. NATO ASI Series Series B: Physics, 1992, , 453-461.                                                                            | 0.2 | 0         |
| 53 | A theoretical study of the chemisorption of methane on a Ni(100) surface. Chemical Physics, 1991, 156, 379-386.                                                                     | 1.9 | 49        |
| 54 | Are atomic 3d-anisotropies important for chemisorption of hydrogen on cobalt?. Chemical Physics<br>Letters, 1991, 177, 49-53.                                                       | 2.6 | 2         |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Oxygen chemisorption on metal surfaces using the cluster model: Basis set effects. Theoretica Chimica Acta, 1991, 79, 413-418.                                                                                     | 0.8 | 4         |
| 56 | Relativistic quantum calculations on some mercury sulfide molecules. Water, Air, and Soil Pollution, 1991, 56, 681-695.                                                                                            | 2.4 | 33        |
| 57 | A theoretical study of atomic fluorine chemisorption on the Ni(100) surface. Journal of Chemical Physics, 1991, 94, 4024-4030.                                                                                     | 3.0 | 52        |
| 58 | Theoretical calculations on the structure of the hexahydrated divalent zinc, cadmium and mercury ions. Chemical Physics Letters, 1990, 172, 49-54.                                                                 | 2.6 | 30        |
| 59 | The effects of core (3d) correlation on chemisorption. Journal of Chemical Physics, 1990, 93, 4954-4957.                                                                                                           | 3.0 | 21        |
| 60 | Mechanism for H2 Dissociation on Transition Metal Clusters and Surfaces. ACS Symposium Series, 1989, , 125-139.                                                                                                    | 0.5 | 1         |
| 61 | Cu 3d covalency in chemisorption?. Journal of Chemical Physics, 1989, 90, 4613-4616.                                                                                                                               | 3.0 | 35        |
| 62 | The mechanism for the O2 dissociation on Ni(100). Journal of Chemical Physics, 1989, 90, 6791-6801.                                                                                                                | 3.0 | 50        |
| 63 | Non-relativistic and relativistic calculations on some Zn, Cd and Hg complexes. Chemical Physics, 1989, 133, 207-219.                                                                                              | 1.9 | 33        |
| 64 | A comparison of the on-top dissociation of H2 on Ni(100) and Cu(100). Theoretica Chimica Acta, 1989, 75, 143-159.                                                                                                  | 0.8 | 36        |
| 65 | On the cluster convergence of chemisorption energies. Chemical Physics Letters, 1988, 149, 265-272.                                                                                                                | 2.6 | 181       |
| 66 | Model studies of the chemisorption of hydrogen and oxygen on nickel surfaces. Theoretica Chimica<br>Acta, 1988, 74, 167-184.                                                                                       | 0.8 | 66        |
| 67 | Ab initio investigation of methyl adsorption on Ni(111). Computational and Theoretical Chemistry, 1988, 170, 151-153.                                                                                              | 1.5 | 3         |
| 68 | Bonding and electronic structure in diatomic ThO: Quasirelativistic effective core potential calculations. Computational and Theoretical Chemistry, 1988, 169, 339-354.                                            | 1.5 | 50        |
| 69 | A theoretical study of methyl chemisorption on Ni(111). Journal of Chemical Physics, 1988, 89, 6982-6988.                                                                                                          | 3.0 | 92        |
| 70 | Model studies of the chemisorption of hydrogen and oxygen on Cu(100). Physical Review B, 1987, 36, 7389-7401.                                                                                                      | 3.2 | 107       |
| 71 | Effective core potential parameters for first―and secondâ€row atoms. Journal of Chemical Physics, 1987,<br>86, 2176-2184.                                                                                          | 3.0 | 109       |
| 72 | Model studies of the chemisorption of hydrogen and oxygen on nickel surfaces. I. The design of a one-electron effective core potential which includes 3d relaxation effects. Chemical Physics, 1987, 112, 325-337. | 1.9 | 86        |

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A theoretical study of the geometrical properties of tellurite complexes. Chemical Physics, 1985, 100, 229-235.                                                                                | 1.9 | 9         |
| 74 | CAS SCF ECP calculations on the optical spectrum of Mo2(O2CH)4 and on the barrier to internal rotation in Mo2Cl84â^. Chemical Physics Letters, 1985, 118, 389-394.                             | 2.6 | 5         |
| 75 | Effective core potential calculation using frozen orbitals applications on the fourth period main group elements. Journal of Chemical Physics, 1984, 80, 1593-1596.                            | 3.0 | 19        |
| 76 | CAS SCF calculations using effective core potentials on the optical spectrum of Mo2Cl84â^'. Chemical Physics Letters, 1984, 104, 336-342.                                                      | 2.6 | 8         |
| 77 | Effective core potential calculations using frozen orbitals. Applications to transition metals.<br>Chemical Physics, 1983, 80, 7-16.                                                           | 1.9 | 145       |
| 78 | Investigations of heavily contracted basis sets and superposition errors for some first- and second-row transition elements. Chemical Physics Letters, 1982, 89, 26-30.                        | 2.6 | 3         |
| 79 | Valence photoelectron spectrum of CoO.Ab initio calculations of energies and relative intensities within a limitedCl framework. International Journal of Quantum Chemistry, 1979, 15, 403-410. | 2.0 | 3         |
| 80 | Pseudo-potential calculations on O, S, Ni, H2S and H2O. Applications of a comparatively simple parameter fitting scheme. Chemical Physics, 1978, 29, 231-240.                                  | 1.9 | 9         |
| 81 | Ab-initio and pseudo-potential calculations on some first, second and third row molecules. A comparative study. Chemical Physics, 1978, 32, 215-221.                                           | 1.9 | 16        |
| 82 | Hydrogen bond studies. Theoretica Chimica Acta, 1973, 28, 161-168.                                                                                                                             | 0.8 | 75        |