Minghua Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12063818/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoplastic Ingestion Enhances Toxicity of Persistent Organic Pollutants (POPs) in the Monogonont Rotifer <i>Brachionus koreanus</i> via Multixenobiotic Resistance (MXR) Disruption. Environmental Science & Technology, 2018, 52, 11411-11418.	10.0	197
2	Proteomic Analysis of Hepatic Tissue of Zebrafish (Danio rerio) Experimentally Exposed to Chronic Microcystin-LR. Toxicological Sciences, 2010, 113, 60-69.	3.1	91
3	Transgenerational Proteome Plasticity in Resilience of a Marine Copepod in Response to Environmentally Relevant Concentrations of Microplastics. Environmental Science & Technology, 2019, 53, 8426-8436.	10.0	81
4	Protein profiles in zebrafish (Danio rerio) brains exposed to chronic microcystin-LR. Chemosphere, 2010, 81, 716-724.	8.2	80
5	Effects of microplastics on marine copepods. Ecotoxicology and Environmental Safety, 2021, 217, 112243.	6.0	68
6	Proteome profiles in medaka (Oryzias melastigma) liver and brain experimentally exposed to acute inorganic mercury. Aquatic Toxicology, 2011, 103, 129-139.	4.0	56
7	Oxidative damage effects in the copepod Tigriopus japonicus Mori experimentally exposed to nickel. Ecotoxicology, 2010, 19, 273-284.	2.4	52
8	Effects of ocean acidification on copepods. Aquatic Toxicology, 2018, 196, 17-24.	4.0	46
9	Adverse effects of methylmercury (MeHg) on life parameters, antioxidant systems, and MAPK signaling pathways in the rotifer Brachionus koreanus and the copepod Paracyclopina nana. Aquatic Toxicology, 2017, 190, 181-189.	4.0	44
10	Quantitative proteomic analysis reveals the mode-of-action for chronic mercury hepatotoxicity to marine medaka (Oryzias melastigma). Aquatic Toxicology, 2013, 130-131, 123-131.	4.0	38
11	Global Proteome Profiling of a Marine Copepod and the Mitigating Effect of Ocean Acidification on Mercury Toxicity after Multigenerational Exposure. Environmental Science & Technology, 2017, 51, 5820-5831.	10.0	38
12	Impacts of mercury exposure on life history traits of Tigriopus japonicus: Multigeneration effects and recovery from pollution. Aquatic Toxicology, 2015, 166, 42-49.	4.0	35
13	Adverse effects of methylmercury (MeHg) on life parameters, antioxidant systems, and MAPK signaling pathways in the copepod Tigriopus japonicus. Aquatic Toxicology, 2017, 184, 133-141.	4.0	33
14	Effects of ocean acidification on life parameters and antioxidant system in the marine copepod Tigriopus japonicus. Aquatic Toxicology, 2019, 212, 186-193.	4.0	33
15	Different transcriptomic responses of two marine copepods, Tigriopus japonicus and Pseudodiaptomus annandalei , to a low dose of mercury chloride (HgCl 2). Aquatic Toxicology, 2017, 187, 124-131.	4.0	30
16	Comparative quantitative proteomics unveils putative mechanisms involved into mercury toxicity and tolerance in Tigriopus japonicus under multigenerational exposure scenario. Environmental Pollution, 2016, 218, 1287-1297.	7.5	29
17	Alleviation of mercury toxicity to a marine copepod under multigenerational exposure by ocean acidification. Scientific Reports, 2017, 7, 324.	3.3	27
18	Quantitative Shotgun Proteomics Associates Molecular-Level Cadmium Toxicity Responses with Compromised Growth and Reproduction in a Marine Copepod under Multigenerational Exposure. Environmental Science & Technology, 2018, 52, 1612-1623.	10.0	27

Minghua Wang

#	Article	IF	CITATIONS
19	Quantitative proteomic analysis reveals proteins involved in the neurotoxicity of marine medaka Oryzias melastigma chronically exposed to inorganic mercury. Chemosphere, 2015, 119, 1126-1133.	8.2	26
20	Transgenerational acclimation to changes in ocean acidification in marine invertebrates. Marine Pollution Bulletin, 2020, 153, 111006.	5.0	26
21	Adverse effects of BDE-47 on life cycle parameters, antioxidant system, and activation of MAPK signaling pathway in the rotifer Brachionus koreanus. Aquatic Toxicology, 2017, 186, 105-112.	4.0	20
22	Warmer temperature increases mercury toxicity in a marine copepod. Ecotoxicology and Environmental Safety, 2020, 201, 110861.	6.0	20
23	Multigenerational Mitigating Effects of Ocean Acidification on <i>In Vivo</i> Endpoints, Antioxidant Defense, DNA Damage Response, and Epigenetic Modification in an Asexual Monogonont Rotifer. Environmental Science & Technology, 2020, 54, 7858-7869.	10.0	19
24	Molecular evidence for suppression of swimming behavior and reproduction in the estuarine rotifer Brachionus koreanus in response to COVID-19 disinfectants. Marine Pollution Bulletin, 2022, 175, 113396.	5.0	14
25	Projected near-future ocean acidification decreases mercury toxicity in marine copepods. Environmental Pollution, 2021, 284, 117140.	7.5	13
26	Mercury can be transported into marine copepod by polystyrene nanoplastics but is not bioaccumulated: An increased risk?. Environmental Pollution, 2022, 303, 119170.	7.5	11
27	CO2-driven seawater acidification increases cadmium toxicity in a marine copepod. Marine Pollution Bulletin, 2021, 173, 113145.	5.0	2