List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1206379/publications.pdf Version: 2024-02-01

MONIKA HILKED

#	Article	IF	CITATIONS
1	Priming and memory of stress responses in organisms lacking a nervous system. Biological Reviews, 2016, 91, 1118-1133.	10.4	388
2	Early Herbivore Alert: Insect Eggs Induce Plant Defense. Journal of Chemical Ecology, 2006, 32, 1379-1397.	1.8	302
3	Plant Responses to Insect Egg Deposition. Annual Review of Entomology, 2015, 60, 493-515.	11.8	265
4	Bacterial Symbionts in Lepidoptera: Their Diversity, Transmission, and Impact on the Host. Frontiers in Microbiology, 2018, 9, 556.	3.5	243
5	Foraging behavior of egg parasitoids exploiting chemical information. Behavioral Ecology, 2008, 19, 677-689.	2.2	237
6	The Relevance of Background Odor in Resource Location by Insects: A Behavioral Approach. BioScience, 2008, 58, 308-316.	4.9	206
7	Insect egg deposition induces <i>Pinus sylvestris</i> to attract egg parasitoids. Journal of Experimental Biology, 2002, 205, 455-461.	1.7	195
8	Induced plant defences: from molecular biology to evolutionary ecology. Basic and Applied Ecology, 2003, 4, 3-14.	2.7	188
9	Stress priming, memory, and signalling in plants. Plant, Cell and Environment, 2019, 42, 753-761.	5.7	187
10	Induction of Plant Synomones by Oviposition of a Phytophagous Insect. Journal of Chemical Ecology, 2000, 26, 221-232.	1.8	181
11	Direct and indirect chemical defence of pine against folivorous insects. Trends in Plant Science, 2006, 11, 351-358.	8.8	176
12	How do plants "notice―attack by herbivorous arthropods?. Biological Reviews, 2010, 85, 267-280.	10.4	159
13	Insect egg deposition induces Pinus sylvestris to attract egg parasitoids. Journal of Experimental Biology, 2002, 205, 455-61.	1.7	159
14	Plants and insect eggs: How do they affect each other?. Phytochemistry, 2011, 72, 1612-1623.	2.9	144
15	Vegetation complexity—The influence of plant species diversity and plant structures on plant chemical complexity and arthropods. Basic and Applied Ecology, 2010, 11, 383-395.	2.7	141
16	The Significance of Background Odour for an Egg Parasitoid to Detect Plants with Host Eggs. Chemical Senses, 2005, 30, 337-343.	2.0	131
17	Chemical analysis of volatiles emitted by Pinus svlvestris after induction by insect oviposition. Journal of Chemical Ecology, 2003, 29, 1235-1252.	1.8	125
18	The Fungal Fast Lane: Common Mycorrhizal Networks Extend Bioactive Zones of Allelochemicals in Soils. PLoS ONE, 2011, 6, e27195.	2.5	123

#	Article	IF	CITATIONS
19	Behavioral responses of Drosophila to biogenic levels of carbon dioxide depend on life-stage, sex and olfactory context. Journal of Experimental Biology, 2006, 209, 2739-2748.	1.7	116
20	Plant odour plumes as mediators of plant–insect interactions. Biological Reviews, 2014, 89, 68-81.	10.4	115
21	Host location in Oomyzus gallerucae (Hymenoptera: Eulophidae), an egg parasitoid of the elm leaf beetle Xanthogaleruca luteola (Coleoptera: Chrysomelidae). Oecologia, 1997, 112, 87-93.	2.0	110
22	Male-derived butterfly anti-aphrodisiac mediates induced indirect plant defense. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10033-10038.	7.1	109
23	Ovipositionâ€induced plant cues: do they arrest Trichogramma wasps during host location?. Entomologia Experimentalis Et Applicata, 2005, 115, 207-215.	1.4	108
24	Ecological cross-effects of induced plant responses towards herbivores and phytopathogenic fungi. Basic and Applied Ecology, 2003, 4, 43-62.	2.7	94
25	Oviposition deterring components in larval frass of Spodoptera littoralis (Boisd.) (Lepidoptera:) Tj ETQq1 1 0.784 129-137.	314 rgBT 2.0	Overlock 10 93
26	Butterfly anti-aphrodisiac lures parasitic wasps. Nature, 2005, 433, 704-704.	27.8	93
27	Insect egg deposition induces defence responses in Pinus sylvestris: characterisation of the elicitor. Journal of Experimental Biology, 2005, 208, 1849-1854.	1.7	92
28	Evidence for damage-dependent hygienic behaviour towards <i>Varroa destructor</i> -parasitised brood in the western honey bee, <i>Apis mellifera</i> . Journal of Experimental Biology, 2012, 215, 264-271.	1.7	85
29	Resisting the onset of herbivore attack: plants perceive and respond to insect eggs. Current Opinion in Plant Biology, 2016, 32, 9-16.	7.1	83
30	Host plant location by Chrysomelidae. Basic and Applied Ecology, 2007, 8, 97-116.	2.7	74
31	Parental Legacy in Insects: Variation of Transgenerational Immune Priming during Offspring Development. PLoS ONE, 2013, 8, e63392.	2.5	71
32	Looking for a similar partner: host plants shape mating preferences of herbivorous insects by altering their contact pheromones. Ecology Letters, 2012, 15, 971-977.	6.4	69
33	Sensing the Underground – Ultrastructure and Function of Sensory Organs in Root-Feeding Melolontha melolontha (Coleoptera: Scarabaeinae) Larvae. PLoS ONE, 2012, 7, e41357.	2.5	69
34	Composition of larval secretion ofChrysomela lapponica (Coleoptera, Chrysomelidae) and its dependence on host plant. Journal of Chemical Ecology, 1994, 20, 1075-1093.	1.8	67
35	Phenotypic Plasticity of Cuticular Hydrocarbon Profiles in Insects. Journal of Chemical Ecology, 2018, 44, 235-247.	1.8	67
36	Relevance of resource-indicating key volatiles and habitat odour for insect orientation. Animal Behaviour, 2010, 79, 1077-1086.	1.9	66

#	Article	IF	CITATIONS
37	Plant volatiles in the sexual communication of Melolontha hippocastani : response towards time-dependent bouquets and novel function of (Z)-3-hexen-1-ol as a sexual kairomone. Ecological Entomology, 2002, 27, 76-83.	2.2	65
38	The Role of Cuticular Hydrocarbons in Male Mating Behavior of the Mustard Leaf Beetle, Phaedon cochleariae (F.). Journal of Chemical Ecology, 2009, 35, 1162-1171.	1.8	65
39	Oviposition by <i>Spodoptera exigua</i> on <i>Nicotiana attenuata</i> primes induced plant defence against larval herbivory. Plant Journal, 2015, 83, 661-672.	5.7	63
40	Analysis of volatiles induced by oviposition of elm leaf beetle Xanthogaleruca luteola on Ulmus minor. Journal of Chemical Ecology, 2001, 27, 499-515.	1.8	62
41	Does egg deposition by herbivorous pine sawflies affect transcription of sesquiterpene synthases in pine?. Planta, 2008, 228, 427-438.	3.2	62
42	Specificity of chemical cues used by a specialist egg parasitoid during host location. Entomologia Experimentalis Et Applicata, 2000, 95, 151-159.	1.4	58
43	Can insect egg deposition â€~warn' a plant of future feeding damage by herbivorous larvae?. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 101-108.	2.6	58
44	Make love not war: a common arthropod defence compound as sex pheromone in the forest cockchafer Melolontha hippocastani. Oecologia, 2001, 128, 44-47.	2.0	56
45	A Plant Notices Insect Egg Deposition and Changes Its Rate of Photosynthesis. Plant Physiology, 2005, 138, 470-477.	4.8	56
46	How plants give early herbivore alert: Volatile terpenoids attract parasitoids to egg-infested elms. Basic and Applied Ecology, 2011, 12, 403-412.	2.7	55
47	Egg Laying of Cabbage White Butterfly (Pieris brassicae) on Arabidopsis thaliana Affects Subsequent Performance of the Larvae. PLoS ONE, 2013, 8, e59661.	2.5	55
48	Early plant defence against insect attack: involvement of reactive oxygen species in plant responses to insect egg deposition. Planta, 2017, 245, 993-1007.	3.2	55
49	Towards an Integrative, Eco-Evolutionary Understanding of Ecological Novelty: Studying and Communicating Interlinked Effects of Global Change. BioScience, 2019, 69, 888-899.	4.9	55
50	Polyketides in insects: ecological role of these widespread chemicals and evolutionary aspects of their biogenesis. Biological Reviews, 2008, 83, 209-226.	10.4	54
51	Comparative physiological responses in Chinese cabbage induced by herbivory and fungal infection. Journal of Chemical Ecology, 2002, 28, 2449-2463.	1.8	53
52	Insect Egg Deposition Induces Indirect Defense and Epicuticular Wax Changes in Arabidopsis thaliana. Journal of Chemical Ecology, 2012, 38, 882-892.	1.8	52
53	Host finding and oviposition behavior in a chrysomelid specialistthe importance of host plant surface waxes. , 2001, 27, 985-994.		51
54	Alcoholism in cockchafers: orientation of male Melolontha melolontha towards green leaf alcohols. Die Naturwissenschaften, 2002, 89, 265-269.	1.6	51

#	Article	IF	CITATIONS
55	Choosy egg parasitoids: Specificity of ovipositionâ€induced pine volatiles exploited by an egg parasitoid of pine sawflies. Entomologia Experimentalis Et Applicata, 2005, 115, 217-225.	1.4	51
56	Priming of antiâ€herbivore defence in <i>Nicotiana attenuata</i> by insect oviposition: herbivoreâ€specific effects. Plant, Cell and Environment, 2016, 39, 848-859.	5.7	50
57	Herbivores and pathogens on willow: do they affect each other?. Agricultural and Forest Entomology, 2003, 5, 275-284.	1.3	48
58	Anti-aphrodisiac Compounds of Male Butterflies Increase the Risk of Egg Parasitoid Attack by Inducing Plant Synomone Production. Journal of Chemical Ecology, 2009, 35, 1373-1381.	1.8	48
59	Response of the elm leaf beetle to host plants induced by oviposition and feeding: the infestation rate matters. Entomologia Experimentalis Et Applicata, 2005, 115, 171-177.	1.4	47
60	Interactions of Carbon Dioxide and Food Odours in Drosophila: Olfactory Hedonics and Sensory Neuron Properties. PLoS ONE, 2013, 8, e56361.	2.5	47
61	The scent of food and defence: green leaf volatiles and toluquinone as sex attractant mediate mate finding in the European cockchafer Melolontha melolontha. Ecology Letters, 2002, 5, 257-263.	6.4	45
62	Larval diet influence on oviposition behaviour in <i>Spodoptera littoralis</i> . Entomologia Experimentalis Et Applicata, 1995, 74, 71-82.	1.4	44
63	Origin of the defensive secretion of the leaf beetle Chrysomela lapponica. Tetrahedron, 1997, 53, 9203-9212.	1.9	44
64	Analysis of volatiles from black pine (): significance of wounding and egg deposition by a herbivorous sawfly. Phytochemistry, 2004, 65, 3221-3230.	2.9	44
65	Innate immunity: Eggs of Manduca sexta are able to respond to parasitism by Trichogramma evanescens. Insect Biochemistry and Molecular Biology, 2008, 38, 136-145.	2.7	44
66	Insect egg deposition renders plant defence against hatching larvae more effective in a salicylic acidâ€dependent manner. Plant, Cell and Environment, 2019, 42, 1019-1032.	5.7	44
67	Antimicrobial activity of exocrine glandular secretion of Chrysomela larvae. Journal of Chemical Ecology, 2002, 28, 317-331.	1.8	43
68	Repeated Inactivation of the First Committed Enzyme Underlies the Loss of Benzaldehyde Emission after the Selfing Transition in Capsella. Current Biology, 2016, 26, 3313-3319.	3.9	43
69	A novel test system for detection of tick repellents. Entomologia Experimentalis Et Applicata, 1999, 91, 431-441.	1.4	41
70	Kairomonal Effects of Sawfly Sex Pheromones on Egg Parasitoids. Journal of Chemical Ecology, 2000, 26, 2591-2601.	1.8	41
71	Unexpected reactions of a generalist predator towards defensive devices of cassidine larvae (Coleoptera, Chrysomelidae). Oecologia, 1999, 118, 166-172.	2.0	40
72	Investigation of oviposition deterrent in larval frass ofSpodoptera littoralis (Boisd.). Journal of Chemical Ecology, 1989, 15, 929-938.	1.8	39

#	Article	IF	CITATIONS
73	Antimicrobial Activity of Exocrine Glandular Secretions, Hemolymph, and Larval Regurgitate of the Mustard Leaf BeetlePhaedon cochleariae. Journal of Invertebrate Pathology, 1998, 72, 296-303.	3.2	39
74	Anthraquinones in different developmental stages ofGaleruca tanaceti (Coleoptera, Chrysomelidae). Journal of Chemical Ecology, 1991, 17, 2323-2332.	1.8	36
75	The effect of a green leaf volatile on host plant finding by larvae of a herbivorous insect. Die Naturwissenschaften, 2000, 87, 216-219.	1.6	36
76	Asymmetric plant-mediated cross-effects between a herbivorous insect and a phytopathogenic fungus. Agricultural and Forest Entomology, 2002, 4, 223-231.	1.3	36
77	Soil hyphaâ€mediated movement of allelochemicals: arbuscular mycorrhizae extend the bioactive zone of juglone. Functional Ecology, 2014, 28, 1020-1029.	3.6	36
78	The Response Specificity of Trichogramma Egg Parasitoids towards Infochemicals during Host Location. Journal of Insect Behavior, 2007, 20, 53-65.	0.7	35
79	Novel Set-Up for Low-Disturbance Sampling of Volatile and Non-volatile Compounds from Plant Roots. Journal of Chemical Ecology, 2015, 41, 253-266.	1.8	35
80	Insect parents improve the anti-parasitic and anti-bacterial defence of their offspring by priming the expression of immune-relevant genes. Insect Biochemistry and Molecular Biology, 2015, 64, 91-99.	2.7	35
81	Elm leaves â€~warned' by insect egg deposition reduce survival of hatching larvae by a shift in their quantitative leaf metabolite pattern. Plant, Cell and Environment, 2016, 39, 366-376.	5.7	35
82	Occurrence of anthraquinones in eggs and larvae of several galerucinae (coleoptera: chrysomelidae). Die Naturwissenschaften, 1992, 79, 271-274.	1.6	34
83	Impact of transgenerational immune priming on the defence of insect eggs against parasitism. Developmental and Comparative Immunology, 2015, 51, 126-133.	2.3	32
84	Reduction of ethylene emission from Scots pine elicited by insect egg secretion. Journal of Experimental Botany, 2007, 58, 1835-1842.	4.8	31
85	Species-specific responses of pine sesquiterpene synthases to sawfly oviposition. Phytochemistry, 2010, 71, 909-917.	2.9	31
86	Defense of Scots pine against sawfly eggs (<i>Diprion pini</i>) is primed by exposure to sawfly sex pheromones. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24668-24675.	7.1	31
87	Protective devices of early developmental stages in Pyrrhalta viburni (Coleoptera, Chrysomelidae). Oecologia, 1992, 92, 71-75.	2.0	30
88	Attractiveness of CO2 released by root respiration fades on the background of root exudates. Basic and Applied Ecology, 2008, 9, 568-576.	2.7	30
89	The Effect of Dietary Fatty Acids on the Cuticular Hydrocarbon Phenotype of an Herbivorous Insect and Consequences for Mate Recognition. Journal of Chemical Ecology, 2015, 41, 32-43.	1.8	30
90	Plant response to butterfly eggs: inducibility, severity and success of egg-killing leaf necrosis depends on plant genotype and egg clustering. Scientific Reports, 2017, 7, 7316.	3.3	30

#	Article	IF	CITATIONS
91	The importance of specialist natural enemies for Chrysomela lapponica in pioneering a new host plant. Ecological Entomology, 2004, 29, 584-593.	2.2	29
92	Habitats as Complex Odour Environments: How Does Plant Diversity Affect Herbivore and Parasitoid Orientation?. PLoS ONE, 2014, 9, e85152.	2.5	29
93	Evaluation of the palatability of chrysomelid larvae containing anthraquinones to birds. Oecologia, 1994, 100, 421-429.	2.0	28
94	Chemical signals mediating interactions betweenGaleruca tanaceti L. (Coleoptera, Chrysomelidae) and its egg parasitoidOomyzus galerucivorus (Hedqvits) (Hymenoptera, Eulophidae). Journal of Insect Behavior, 1997, 10, 523-539.	0.7	28
95	Nesting Behavior and Prey Use in Two Geographically Separated Populations of the Specialist Wasp Symmorphus cristatus (Vespidae: Eumeninae). American Midland Naturalist, 2001, 145, 233-246.	0.4	28
96	The significance of bottom-up effects for host plant specialization inChrysomelaleaf beetles. Oikos, 2004, 105, 368-376.	2.7	27
97	An elm EST database for identifying leaf beetle egg-induced defense genes. BMC Genomics, 2012, 13, 242.	2.8	27
98	Elm defence against herbivores and pathogens: morphological, chemical and molecular regulation aspects. Phytochemistry Reviews, 2016, 15, 961-983.	6.5	27
99	Does Rust Infection of Willow Affect Feeding and Oviposition Behavior of Willow Leaf Beetles?. Journal of Insect Behavior, 2005, 18, 115-129.	0.7	25
100	Intra―and interspecific effects of larval secretions in some chrysomelids (Coleoptera). Entomologia Experimentalis Et Applicata, 1989, 53, 237-245.	1.4	24
101	Quinones in cockchafers: additional function of a sex attractant as an antimicrobial agent. Chemoecology, 2001, 11, 225-229.	1.1	24
102	Presence of Wolbachia in Insect Eggs Containing Antimicrobially Active Anthraquinones. Microbial Ecology, 2007, 54, 713-721.	2.8	24
103	Unusual mechanisms involved in learning of oviposition-induced host plant odours in an egg parasitoid?. Animal Behaviour, 2008, 75, 1423-1430.	1.9	24
104	The attraction of insectivorous tit species to herbivore-damaged Scots pines. Journal of Ornithology, 2017, 158, 479-491.	1.1	24
105	Thermal Adaptations of the Leaf BeetleChrysomela lapponica(Coleoptera: Chrysomelidae) to Different Climes of Central and Northern Europe. Environmental Entomology, 2004, 33, 799-806.	1.4	23
106	Electrophysiological and behavioural responses of Melolontha melolontha to saturated and unsaturated aliphatic alcohols. Entomologia Experimentalis Et Applicata, 2005, 115, 33-40.	1.4	23
107	Plant responses to butterfly oviposition partly explain preference–performance relationships on different brassicaceous species. Oecologia, 2020, 192, 463-475.	2.0	23
108	Indirect interactions between a phytopathogenic and an entomopathogenic fungus. Die Naturwissenschaften, 2003, 90, 63-67.	1.6	22

#	Article	IF	CITATIONS
109	New Synthesis: Parallels Between Biodiversity and Chemodiversity. Journal of Chemical Ecology, 2014, 40, 225-226.	1.8	22
110	Pre-exposure of Arabidopsis to the abiotic or biotic environmental stimuli "chilling―or "insect eggs― exhibits different transcriptomic responses to herbivory. Scientific Reports, 2016, 6, 28544.	3.3	22
111	Cardenolide glycosides from the adults and eggs ofChrysolina fuliginosa (Coleoptera:) Tj ETQq1 1 0.784314 rgBT	/Overlock 1.2	10 Tf 50 66 21
112	Sigillinâ€A, a Unique Polychlorinated Arthropod Deterrent from the Snow Flea <i>Ceratophysella sigillata</i> . Angewandte Chemie - International Edition, 2015, 54, 7698-7702.	13.8	21
113	Feeding damage by larvae of the mustard leaf beetle deters conspecific females from oviposition and feeding. Entomologia Experimentalis Et Applicata, 2002, 103, 267-277.	1.4	20
114	Ipangulines and minalobines, chemotaxonomic markers of the infrageneric Ipomoea taxon subgenus Quamoclit, section Mina. Phytochemistry, 2005, 66, 223-231.	2.9	20
115	Priming by Timing: Arabidopsis thaliana Adjusts Its Priming Response to Lepidoptera Eggs to the Time of Larval Hatching. Frontiers in Plant Science, 2020, 11, 619589.	3.6	20
116	Plant responses to insect eggs are not induced by eggâ€associated microbes, but by a secretion attached to the eggs. Plant, Cell and Environment, 2020, 43, 1815-1826.	5.7	20
117	Insectivorous birds can see and smell systemically herbivoreâ€induced pines. Ecology and Evolution, 2020, 10, 9358-9370.	1.9	19
118	Effects of Physical and Chemical Signals on Host Foraging Behavior of Drino inconspicua (Diptera:) Tj ETQq0 0 0 r	gBT /Overl 1.4	ock 10 Tf 50
119	Transcriptomic basis for reinforcement of elm antiherbivore defence mediated by insect egg deposition. Molecular Ecology, 2018, 27, 4901-4915.	3.9	18
120	Phenol â^' Another Cockchafer Attractant Shared by Melolontha hippocastani Fabr. and M. melolontha L Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2002, 57, 910-913.	1.4	17
121	Evolutionary variations on a theme: host plant specialization in five geographical populations of the leaf beetle Chrysomela lapponica. Population Ecology, 2010, 52, 389-396.	1.2	17
122	Arabidopsis, tobacco, nightshade and elm take insect eggs as herbivore alarm and show similar transcriptomic alarm responses. Scientific Reports, 2020, 10, 16281.	3.3	17
123	Attraction of forest cockchafer Melolontha hippocastani to (Z)-3-hexen-1-ol and 1,4-benzoquinone: application aspects. Entomologia Experimentalis Et Applicata, 2003, 107, 141-147.	1.4	16
124	Pine defense against eggs of an herbivorous sawfly is elicited by an annexinâ€like protein present in eggâ€associated secretion. Plant, Cell and Environment, 2022, 45, 1033-1048.	5.7	16
125	Host Habitat Volatiles Enhance the Olfactory Response of the Larval Parasitoid <i>Holepyris sylvanidis</i> to Specifically Host-Associated Cues. Chemical Senses, 2016, 41, bjw065.	2.0	15
126	Legacy of a Butterfly's Parental Microbiome in Offspring Performance. Applied and Environmental Microbiology, 2020, 86, .	3.1	14

#	Article	IF	CITATIONS
127	Optimized trap lure for male Melolontha cockchafers. Journal of Applied Entomology, 2006, 130, 171-176.	1.8	13
128	Defensive Components in Insect Eggs: Are Anthraquinones Produced during Egg Development?. Journal of Chemical Ecology, 2006, 32, 2067-2072.	1.8	13
129	Electrophysiological responses of the blue willow leaf beetle, PhratoraÂvulgatissima, to volatiles of different SalixÂviminalis genotypes. Entomologia Experimentalis Et Applicata, 2007, 125, 157-164.	1.4	13
130	Oviposition Deterrent from Larval Frass of Spodoptera littoralis (Boisd.). Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1990, 45, 895-901.	1.4	12
131	Does vegetation complexity affect host plant chemistry, and thus multitrophic interactions, in a human-altered landscape?. Oecologia, 2015, 179, 281-292.	2.0	12
132	Inter- and Intrapopulation Variability in the Composition of Larval Defensive Secretions of Willow-Feeding Populations of the Leaf Beetle Chrysomela lapponica. Journal of Chemical Ecology, 2015, 41, 276-286.	1.8	12
133	Insectivorous Birds Are Attracted by Plant Traits Induced by Insect Egg Deposition. Journal of Chemical Ecology, 2018, 44, 1127-1138.	1.8	12
134	Retracing the molecular basis and evolutionary history of the loss of benzaldehyde emission in the genus Capsella. New Phytologist, 2019, 224, 1349-1360.	7.3	12
135	The Importance of Methyl-Branched Cuticular Hydrocarbons for Successful Host Recognition by the Larval Ectoparasitoid Holepyris sylvanidis. Journal of Chemical Ecology, 2020, 46, 1032-1046.	1.8	12
136	Influence of larvae of Gastrophysa viridula on the distribution of conspecific adults in the field. Ecological Entomology, 1996, 21, 370-376.	2.2	11
137	Reproductive isolation between populations from Northern and Central Europe of the leaf beetle Chrysomela lapponica L. Chemoecology, 2006, 16, 241-251.	1.1	11
138	How to Spoil the Taste of Insect Prey? A Novel Feeding Deterrent against Ants Released by Larvae of the Alder Leaf Beetle, <i>Agelastica alni</i> . ChemBioChem, 2010, 11, 1720-1726.	2.6	11
139	Responses to larval herbivory in the phenylpropanoid pathway of Ulmus minor are boosted by prior insect egg deposition. Planta, 2022, 255, 16.	3.2	11
140	Phenotypic plasticity of mate recognition systems prevents sexual interference between two sympatric leaf beetle species. Evolution; International Journal of Organic Evolution, 2016, 70, 1819-1828.	2.3	10
141	A Versatile Method for On-Line Analysis of Volatile Compounds from Living Samples. Journal of Chemical Ecology, 1998, 24, 525-534.	1.8	9
142	Phenotypic plasticity in host plant preference of the willow leaf beetlePhratora vulgatissima: the impact of experience made by adults. Agricultural and Forest Entomology, 2014, 16, 417-425.	1.3	9
143	Soil substrates affect responses of root feeding larvae to their hosts at multiple levels: Orientation, locomotion and feeding. Basic and Applied Ecology, 2016, 17, 115-124.	2.7	9
144	Cuticular Hydrocarbons of Tribolium confusum Larvae Mediate Trail Following and Host Recognition in the Ectoparasitoid Holepyris sylvanidis. Journal of Chemical Ecology, 2017, 43, 858-868.	1.8	9

#	Article	IF	CITATIONS
145	How the â€ [~] kitome' influences the characterization of bacterial communities in lepidopteran samples with low bacterial biomass. Journal of Applied Microbiology, 2021, 130, 1780-1793.	3.1	9
146	Larval exocrine glands in the galerucine Agelastica alni L. (Coleoptera: Chrysomelidae): their morphology and possible functions. Chemoecology, 1999, 9, 55-62.	1.1	7
147	Do "glanduliferous―larvae of Galerucinae (Coleoptera: Chrysomelidae) possess defensive glands? A scanning electron microscopic study. Zoomorphology, 2005, 124, 111-119.	0.8	6
148	Pre-copulatory isolation in sympatric Melolontha species (Coleoptera: Scarabaeidae). Agricultural and Forest Entomology, 2006, 8, 289-293.	1.3	6
149	Infochemicals influencing the host foraging behaviour of Dahlbominus fuscipennis, a pupal parasitoid of the European spruce sawfly (Gilpinia hercyniae). Entomologia Experimentalis Et Applicata, 1998, 86, 221-227.	1.4	5
150	The role of competitors for Chrysomela lapponica, a north Eurasian willow pest, in pioneering a new host plant. Journal of Pest Science, 2007, 80, 139-143.	3.7	5
151	Cuticular Hydrocarbon Trails Released by Host Larvae Lose their Kairomonal Activity for Parasitoids by Solidification. Journal of Chemical Ecology, 2021, 47, 998-1013.	1.8	4
152	The differential response of cold-experienced Arabidopsis thaliana to larval herbivory benefits an insect generalist, but not a specialist. BMC Plant Biology, 2019, 19, 338.	3.6	3
153	Priming of Arabidopsis resistance to herbivory by insect egg deposition depends on the plant's developmental stage. Journal of Experimental Botany, 2022, 73, 4996-5015.	4.8	3
154	Clear Language for Ecosystem Management in the Anthropocene: A Reply to Bridgewater and Hemming. BioScience, 2020, 70, 374-376.	4.9	2
155	Phenotypic Plasticity in a Willow Leaf Beetle Depends on Host Plant Species: Release and Recognition of Beetle Odors. Chemical Senses, 2015, 40, 109-124.	2.0	1
156	Plant responses to insect eggs are not induced by eggâ€associated microbes, but by a secretion attached to the eggs. Plant, Cell and Environment, 2020, 43, i.	5.7	0