Hui Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12061096/publications.pdf

Version: 2024-02-01

172457 265206 4,045 42 40 29 citations h-index g-index papers 42 42 42 3817 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Engineering interfacial charge transfer channel for efficient photocatalytic H2 evolution: The interplay of CoPx and Ca2+ dopant. Applied Catalysis B: Environmental, 2022, 303, 120887.	20.2	25
2	Solar-Driven Hydrogen Production: Recent Advances, Challenges, and Future Perspectives. ACS Energy Letters, 2022, 7, 1043-1065.	17.4	247
3	Photothermal tandem catalysis for CO2 hydrogenation to methanol. CheM, 2022, 8, 1181-1183.	11.7	15
4	Plasmonic photothermal catalysis for solar-to-fuel conversion: current status and prospects. Chemical Science, 2021, 12, 5701-5719.	7.4	129
5	Ambient sunlight-driven photothermal methanol dehydrogenation for syngas production with 32.9 % solar-to-hydrogen conversion efficiency. IScience, 2021, 24, 102056.	4.1	12
6	Triggering Water and Methanol Activation for Solar-Driven H ₂ Production: Interplay of Dual Active Sites over Plasmonic ZnCu Alloy. Journal of the American Chemical Society, 2021, 143, 12145-12153.	13.7	85
7	Efficient and selective photocatalytic CH4 conversion to CH3OH with O2 by controlling overoxidation on TiO2. Nature Communications, 2021, 12, 4652.	12.8	131
8	Metal-organic framework-derived Ga-Cu/CeO2 catalyst for highly efficient photothermal catalytic CO2 reduction. Applied Catalysis B: Environmental, 2021, 298, 120519.	20.2	55
9	A selective Au-ZnO/TiO2 hybrid photocatalyst for oxidative coupling of methane to ethane with dioxygen. Nature Catalysis, 2021, 4, 1032-1042.	34.4	156
10	Kopplung von Solarenergie und WÄrmeenergie zur Kohlendioxidreduktion: Aktueller Stand und Perspektiven. Angewandte Chemie, 2020, 132, 8092-8111.	2.0	27
11	Coupling of Solar Energy and Thermal Energy for Carbon Dioxide Reduction: Status and Prospects. Angewandte Chemie - International Edition, 2020, 59, 8016-8035.	13.8	323
12	A mesoporous non-precious metal boride system: synthesis of mesoporous cobalt boride by strictly controlled chemical reduction. Chemical Science, 2020, 11, 791-796.	7.4	58
13	Selective Photo-oxidation of Methane to Methanol with Oxygen over Dual-Cocatalyst-Modified Titanium Dioxide. ACS Catalysis, 2020, 10, 14318-14326.	11.2	114
14	Hemispherical shell-thin lamellar WS2 porous structures composited with CdS photocatalysts for enhanced H2 evolution. Chemical Engineering Journal, 2020, 388, 124346.	12.7	56
15	Solar-driven production of hydrogen and acetaldehyde from ethanol on Ni-Cu bimetallic catalysts with solar-to-fuels conversion efficiency up to 3.8 %. Applied Catalysis B: Environmental, 2020, 272, 118965.	20.2	42
16	Rules for Selecting Metal Cocatalyst Based on Charge Transfer and Separation Efficiency between ZnO Nanoparticles and Noble Metal Cocatalyst Ag/ Au/ Pt. ChemCatChem, 2020, 12, 3838-3842.	3.7	24
17	Solar-Energy-Mediated Methane Conversion. Joule, 2019, 3, 1606-1636.	24.0	252
18	Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation. Nature Communications, 2019, 10 , 2359 .	12.8	185

#	Article	IF	Citations
19	Photo-assisted methanol synthesis via CO2 reduction under ambient pressure over plasmonic Cu/ZnO catalysts. Applied Catalysis B: Environmental, 2019, 250, 10-16.	20.2	142
20	Direct and Selective Photocatalytic Oxidation of CH ₄ to Oxygenates with O ₂ on Cocatalysts/ZnO at Room Temperature in Water. Journal of the American Chemical Society, 2019, 141, 20507-20515.	13.7	253
21	Light irradiation enhanced CO2 reduction with methane: A case study in size-dependent optical property of Ni nanoparticles. Catalysis Today, 2019, 335, 187-192.	4.4	29
22	Probing the role of nickel dopant in aqueous colloidal ZnS nanocrystals for efficient solar-driven CO2 reduction. Applied Catalysis B: Environmental, 2019, 244, 1013-1020.	20.2	50
23	Interfacing Photosynthetic Membrane Protein with Mesoporous WO ₃ Photoelectrode for Solar Water Oxidation. Small, 2018, 14, e1800104.	10.0	14
24	Photoassisted Construction of Holey Defective gâ€C ₃ N ₄ Photocatalysts for Efficient Visibleâ€Lightâ€Driven H ₂ O ₂ Production. Small, 2018, 14, 1703142.	10.0	353
25	Light-Enhanced Carbon Dioxide Activation and Conversion by Effective Plasmonic Coupling Effect of Pt and Au Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2018, 10, 408-416.	8.0	179
26	A Promising Application of Optical Hexagonal TaN in Photocatalytic Reactions. Angewandte Chemie - International Edition, 2018, 57, 16781-16784.	13.8	55
27	A Promising Application of Optical Hexagonal TaN in Photocatalytic Reactions. Angewandte Chemie, 2018, 130, 17023-17026.	2.0	7
28	Visible-Light-Mediated Methane Activation for Steam Methane Reforming under Mild Conditions: A Case Study of Rh/TiO ₂ Catalysts. ACS Catalysis, 2018, 8, 7556-7565.	11.2	126
29	The crystalline/amorphous contact in Cu ₂ O/Ta ₂ O ₅ heterostructures: increasing its sunlight-driven overall water splitting efficiency. Journal of Materials Chemistry A, 2017, 5, 2732-2738.	10.3	41
30	In Situ Carbon Homogeneous Doping on Ultrathin Bismuth Molybdate: A Dualâ€Purpose Strategy for Efficient Molecular Oxygen Activation. Advanced Functional Materials, 2017, 27, 1703923.	14.9	136
31	Effective Formation of Oxygen Vacancies in Black TiO ₂ Nanostructures with Efficient Solar-Driven Water Splitting. ACS Sustainable Chemistry and Engineering, 2017, 5, 8982-8987.	6.7	131
32	Fabrication of Fe ₂ TiO ₅ /TiO ₂ nanoheterostructures with enhanced visible-light photocatalytic activity. RSC Advances, 2016, 6, 45343-45348.	3.6	38
33	Interfacial effect on Mn-doped TiO ₂ nanoparticles: from paramagnetism to ferromagnetism. RSC Advances, 2016, 6, 57403-57408.	3.6	18
34	Ultrahigh efficient water oxidation under visible light: Using Fe dopants to integrate nanostructure and cocatalyst in LaTiO2N system. Nano Energy, 2016, 19, 437-445.	16.0	17
35	Preparation of ZnFe ₂ O ₄ nanostructures and highly efficient visible-light-driven hydrogen generation with the assistance of nanoheterostructures. Journal of Materials Chemistry A, 2015, 3, 8353-8360.	10.3	135
36	Enhancing photocatalytic activity for visible-light-driven H2 generation with the surface reconstructed LaTiO2N nanostructures. Nano Energy, 2015, 12, 775-784.	16.0	62

#	Article	IF	CITATIONS
37	Synthesis of Fe-doped WO3 nanostructures with high visible-light-driven photocatalytic activities. Applied Catalysis B: Environmental, 2015, 166-167, 112-120.	20.2	175
38	A Full Compositional Range for a (Ga _{1-<i>x</i>/i>/sub>O<i>_x</i>) (N_{1-<i>x</i>/sub>O<i>_x</i>) Nanostructure: High Efficiency for Overall Water Splitting and Optical Properties. Small, 2015, 11, 871-876.}}	10.0	77
39	A new type of hybrid nanostructure: complete photo-generated carrier separation and ultrahigh photocatalytic activity. Journal of Materials Chemistry A, 2014, 2, 14245-14250.	10.3	36
40	A new type of p-type NiO/n-type ZnO nano-heterojunctions with enhanced photocatalytic activity. RSC Advances, 2014, 4, 34649.	3.6	30