
Uwe Koedel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12060186/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Community-acquired bacterial meningitis. Lancet, The, 2021, 398, 1171-1183.	13.7	89
2	Combined therapy with ceftriaxone and doxycycline does not improve the outcome of meningococcal meningitis in mice compared to ceftriaxone monotherapy. BMC Infectious Diseases, 2020, 20, 505.	2.9	1
3	In vivo proteomics identifies the competence regulon and AliB oligopeptide transporter as pathogenic factors in pneumococcal meningitis. PLoS Pathogens, 2019, 15, e1007987.	4.7	25
4	APRIL and BAFF: novel biomarkers for central nervous system lymphoma. Journal of Hematology and Oncology, 2019, 12, 102.	17.0	22
5	Virulence Traits of a Serogroup C Meningococcus and Isogenic <i>cssA</i> Mutant, Defective in Surface-Exposed Sialic Acid, in a Murine Model of Meningitis. Infection and Immunity, 2019, 87, .	2.2	7
6	Novel and preclinical treatment strategies in pneumococcal meningitis. Current Opinion in Infectious Diseases, 2018, 31, 85-92.	3.1	12
7	Mast Cells Are Activated by Streptococcus pneumoniae In Vitro but Dispensable for the Host Defense Against Pneumococcal Central Nervous System Infection In Vivo. Frontiers in Immunology, 2018, 9, 550.	4.8	9
8	Role of purinergic signaling in experimental pneumococcal meningitis. Scientific Reports, 2017, 7, 44625.	3.3	12
9	Lyme neuroborreliosis. Current Opinion in Infectious Diseases, 2017, 30, 101-107.	3.1	44
10	Inhibition of DAMP signaling as an effective adjunctive treatment strategy in pneumococcal meningitis. Journal of Neuroinflammation, 2017, 14, 214.	7.2	20
11	Dramatic reduction of mortality in pneumococcal meningitis. Critical Care, 2016, 20, 312.	5.8	46
12	Community-acquired bacterial meningitis. Nature Reviews Disease Primers, 2016, 2, 16074.	30.5	193
13	Lyme neuroborreliosis—epidemiology, diagnosis and management. Nature Reviews Neurology, 2015, 11, 446-456.	10.1	207
14	Myeloid-Related Protein 14 Promotes Inflammation and Injury in Meningitis. Journal of Infectious Diseases, 2015, 212, 247-257.	4.0	30
15	Leukocyte Attraction by CCL20 and Its Receptor CCR6 in Humans and Mice with Pneumococcal Meningitis. PLoS ONE, 2014, 9, e93057.	2.5	26
16	Inhibition of matrix metalloproteinases attenuates brain damage in experimental meningococcal meningitis. BMC Infectious Diseases, 2014, 14, 726.	2.9	29
17	Plasminogen activator inhibitor-1 influences cerebrovascular complications and death in pneumococcal meningitis. Acta Neuropathologica, 2014, 127, 553-564.	7.7	17

18 Immunopathogenesis of Bacterial Meningitis. , 2014, , 387-404.

Uwe Koedel

#	Article	IF	CITATIONS
19	High mobility group box 1 prolongs inflammation and worsens disease in pneumococcal meningitis. Brain, 2013, 136, 1746-1759.	7.6	34
20	Adjunctive <i>N</i> -Acetyl- <scp> </scp> -Cysteine in Treatment of Murine Pneumococcal Meningitis. Antimicrobial Agents and Chemotherapy, 2013, 57, 4825-4830.	3.2	9
21	TLR13 Recognizes Bacterial 23 <i>S</i> rRNA Devoid of Erythromycin Resistance–Forming Modification. Science, 2012, 337, 1111-1115.	12.6	361
22	Bacterial meningitis: current therapy and possible future treatment options. Expert Review of Anti-Infective Therapy, 2011, 9, 1053-1065.	4.4	20
23	Arterial cerebrovascular complications in 94 adults with acute bacterial meningitis. Critical Care, 2011, 15, R281.	5.8	83
24	Reduced spiral ganglion neuronal loss by adjunctive neurotrophin-3 in experimental pneumococcal meningitis. Journal of Neuroinflammation, 2011, 8, 7.	7.2	26
25	Impact of Glutamine Transporters on Pneumococcal Fitness under Infection-Related Conditions. Infection and Immunity, 2011, 79, 44-58.	2.2	52
26	The NLRP3 Inflammasome Contributes to Brain Injury in Pneumococcal Meningitis and Is Activated through ATP-Dependent Lysosomal Cathepsin B Release. Journal of Immunology, 2011, 187, 5440-5451.	0.8	192
27	Complement component 5 contributes to poor disease outcome in humans and mice with pneumococcal meningitis. Journal of Clinical Investigation, 2011, 121, 3943-3953.	8.2	98
28	New understandings on the pathophysiology of bacterial meningitis. Current Opinion in Infectious Diseases, 2010, 23, 217-223.	3.1	110
29	Modulation of Brain Injury as a Target of Adjunctive Therapy in Bacterial Meningitis. Current Infectious Disease Reports, 2010, 12, 266-273.	3.0	16
30	Adjuvant glycerol is not beneficial in experimental pneumococcal meningitis. BMC Infectious Diseases, 2010, 10, 84.	2.9	20
31	CXCL16 Contributes to Neutrophil Recruitment to Cerebrospinal Fluid in Pneumococcal Meningitis. Journal of Infectious Diseases, 2010, 202, 1389-1396.	4.0	27
32	Apoptosis Is Essential for Neutrophil Functional Shutdown and Determines Tissue Damage in Experimental Pneumococcal Meningitis. PLoS Pathogens, 2009, 5, e1000461.	4.7	161
33	Simvastatin attenuates leukocyte recruitment in experimental bacterial meningitis. International Immunopharmacology, 2009, 9, 371-374.	3.8	13
34	The chemokine CXCL13 is a key regulator of B cell recruitment to the cerebrospinal fluid in acute Lyme neuroborreliosis. Journal of Neuroinflammation, 2009, 6, 42.	7.2	118
35	Toll-Like Receptors in Bacterial Meningitis. Current Topics in Microbiology and Immunology, 2009, 336, 15-40.	1.1	35
36	Myeloid Src kinases regulate phagocytosis and oxidative burst in pneumococcal meningitis by activating NADPH oxidase. Journal of Leukocyte Biology, 2008, 84, 1141-1150.	3.3	18

Uwe Koedel

#	Article	IF	CITATIONS
37	Innate Immunity to Pneumococcal Infection of the Central Nervous System Depends on Tollâ€Like Receptor (TLR) 2 and TLR4. Journal of Infectious Diseases, 2008, 198, 1028-1036.	4.0	119
38	The Pathogenesis of Lyme Neuroborreliosis: From Infection to Inflammation. Molecular Medicine, 2008, 14, 205-212.	4.4	176
39	Bacterial Meningitis: The Role of Transforming Growth Factor-Beta in Innate Immunity and Secondary Brain Damage. Neurodegenerative Diseases, 2007, 4, 43-50.	1.4	23
40	Borrelia garinii Induces CXCL13 Production in Human Monocytes through Toll-Like Receptor 2. Infection and Immunity, 2007, 75, 4351-4356.	2.2	76
41	MyD88â€Ðependent Immune Response Contributes to Hearing Loss in Experimental Pneumococcal Meningitis. Journal of Infectious Diseases, 2007, 195, 1189-1193.	4.0	23
42	Complement C1q and C3 Are Critical for the Innate Immune Response to <i>Streptococcus pneumoniae</i> in the Central Nervous System. Journal of Immunology, 2007, 178, 1861-1869.	0.8	78
43	Differential regulation of blood–brain barrier permeability in brain trauma and pneumococcal meningitis—role of Src kinases. Experimental Neurology, 2007, 203, 158-167.	4.1	10
44	Acute Brain Injury Triggers MyD88-Dependent, TLR2/4-Independent Inflammatory Responses. American Journal of Pathology, 2007, 171, 200-213.	3.8	63
45	Disease models of acute bacterial meningitis. Drug Discovery Today: Disease Models, 2006, 3, 105-112.	1.2	4
46	Oxidative stress in pneumococcal meningitis: A future target for adjunctive therapy?. Progress in Neurobiology, 2006, 80, 269-280.	5.7	96
47	Protein expression pattern in experimental pneumococcal meningitis. Microbes and Infection, 2006, 8, 974-983.	1.9	54
48	Adhesion of Borrelia garinii to neuronal cells is mediated by the interaction of OspA with proteoglycans. Journal of Neuroimmunology, 2006, 175, 5-11.	2.3	17
49	TGFÂ receptor II gene deletion in leucocytes prevents cerebral vasculitis in bacterial meningitis. Brain, 2006, 129, 2404-2415.	7.6	41
50	Development of Adjunctive Therapies for Bacterial Meningitis and Lessons From Knockout Mice. Neurocritical Care, 2005, 2, 313-324.	2.4	12
51	Patterns of protein expression in infectious meningitis: A cerebrospinal fluid protein array analysis. Journal of Neuroimmunology, 2005, 164, 134-139.	2.3	54
52	CXCL11 is involved in leucocyte recruitment to the central nervous system in neuroborreliosis. Journal of Neurology, 2005, 252, 820-823.	3.6	26
53	Urokinase‶ype Plasminogen Activator Receptor Regulates Leukocyte Recruitment during Experimental Pneumococcal Meningitis. Journal of Infectious Diseases, 2005, 191, 776-782.	4.0	29
54	MyD88 is required for mounting a robust host immune response to Streptococcus pneumoniae in the CNS. Brain, 2004, 127, 1437-1445.	7.6	137

UWE KOEDEL

#	Article	IF	CITATIONS
55	Inflammatory response during bacterial meningitis is unchanged in Fas- and Fas ligand-deficient mice. Journal of Neuroimmunology, 2004, 152, 78-82.	2.3	20
56	Protective role of NF-κB1 (p50) in experimental pneumococcal meningitis. European Journal of Pharmacology, 2004, 498, 315-318.	3.5	17
57	Meningitis-associated hearing loss: Protection by adjunctive antioxidant therapy. Annals of Neurology, 2003, 54, 451-458.	5.3	75
58	Increased Intrathecal Release of Soluble Fractalkine in HIV-Infected Patients. AIDS Research and Human Retroviruses, 2003, 19, 111-116.	1.1	40
59	Toll-Like Receptor 2 Participates in Mediation of Immune Response in Experimental Pneumococcal Meningitis. Journal of Immunology, 2003, 170, 438-444.	0.8	208
60	Lack of IL-6 augments inflammatory response but decreases vascular permeability in bacterial meningitis. Brain, 2003, 126, 1873-1882.	7.6	112
61	Morphological Correlates of Acute and Permanent Hearing Loss During Experimental Pneumococcal Meningitis. Brain Pathology, 2003, 13, 123-132.	4.1	44
62	Experimental bacterial meningitis in rats: Demonstration of hydrocephalus and meningeal enhancement by magnetic resonance imaging. Neurological Research, 2002, 24, 307-310.	1.3	21
63	Pathophysiology of Bacterial Meningitis: Mechanism(s) of Neuronal Injury. Journal of Infectious Diseases, 2002, 186, S225-S233.	4.0	290
64	Pathogenesis and pathophysiology of pneumococcal meningitis. Lancet Infectious Diseases, The, 2002, 2, 721-736.	9.1	333
65	Role of Caspase-1 in experimental pneumococcal meningitis: Evidence from pharmacologic Caspase inhibition and Caspase-1-deficient mice. Annals of Neurology, 2002, 51, 319-329.	5.3	76
66	Meningitis-Associated Central Nervous System Complications are Mediated by the Activation of Poly(ADP-ribose) Polymerase. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 39-49.	4.3	75
67	Experimental meningitis in the rat: protection by uric acid at human physiological blood concentrations. European Journal of Pharmacology, 2001, 425, 149-152.	3.5	24
68	Differential Expression of Nitric Oxide Synthases in Bacterial Meningitis: Role of the Inducible Isoform for Bloodâ€Brain Barrier Breakdown. Journal of Infectious Diseases, 2001, 183, 1749-1759.	4.0	89
69	Lack of Endothelial Nitric Oxide Synthase Aggravates Murine Pneumococcal Meningitis. Journal of Neuropathology and Experimental Neurology, 2001, 60, 1041-1050.	1.7	54
70	Reduction of intracranial pressure by nimodipine in experimental pneumococcal meningitis. Critical Care Medicine, 2000, 28, 2552-2556.	0.9	10
71	Differential expression of matrix metalloproteinases in bacterial meningitis. Brain, 1999, 122, 1579-1587.	7.6	91
72	Acute meningitis. Current Infectious Disease Reports, 1999, 1, 153-159.	3.0	9

UWE KOEDEL

#	Article	IF	CITATIONS
73	Identification of a T cell chemotactic factor in the cerebrospinal fluid of HIV-1-infected individuals as interferon-Î ³ inducible protein 10. Journal of Neuroimmunology, 1999, 93, 172-181.	2.3	155
74	MODELS OF EXPERIMENTAL BACTERIAL MENINGITIS. Infectious Disease Clinics of North America, 1999, 13, 549-577.	5.1	42
75	Oxidative Stress in Bacterial Meningitis. Brain Pathology, 1999, 9, 57-67.	4.1	83
76	Endothelin B Receptor–Mediated Increase of Cerebral Blood Flow in Experimental Pneumococcal Meningitis. Journal of Cerebral Blood Flow and Metabolism, 1998, 18, 67-74.	4.3	17
77	Matrix metalloproteinases contribute to the blood?brain barrier disruption during bacterial meningitis. Annals of Neurology, 1998, 44, 592-600.	5.3	185
78	Presence of Matrix Metalloproteinaseâ€9 Activity in the Cerebrospinal Fluid of Human Immunodeficiency Virus—Infected Patients. Journal of Infectious Diseases, 1998, 178, 854-857.	4.0	92
79	Increased Endothelin Levels in Cerebrospinal Fluid Samples from Adults with Bacterial Meningitis. Clinical Infectious Diseases, 1997, 25, 329-330.	5.8	28
80	Protective effect of the antioxidant N-acetyl-l-cysteine in pneumococcal meningitis in the rat. Neuroscience Letters, 1997, 225, 33-36.	2.1	69
81	7-Nitroindazole Inhibits Pial Arteriolar Vasodilation in a Rat Model of Pneumococcal Meningitis. Journal of Cerebral Blood Flow and Metabolism, 1997, 17, 985-991.	4.3	21
82	Mannitol, but not allopurinol, modulates changes in cerebral blood flow, intracranial pressure, and brain water content during pneumococcal meningitis in the rat. Critical Care Medicine, 1996, 24, 1874-1880.	0.9	25
83	Involvement of substance P in pial arteriolar vasodilatation during pneumococcal meningitis in the rat. NeuroReport, 1995, 6, 1301-1305.	1.2	18
84	Experimental pneumococcal meningitis: Cerebrovascular alterations, brain edema, and meningeal inflammation are linked to the production of nitric oxide. Annals of Neurology, 1995, 37, 313-323.	5.3	148
85	Global Cerebral Ischemia in the Rat: Online Monitoring of Oxygen Free Radical Production Using Chemiluminescence in vivo. Journal of Cerebral Blood Flow and Metabolism, 1995, 15, 929-940.	4.3	150
86	Protective Effect of a 21-Aminosteroid during Experimental Pneumococcal Meningitis. Journal of Infectious Diseases, 1995, 172, 113-118.	4.0	20
87	Methylprednisolone attenuates inflammation, increase of brain water content and intracranial pressure, but does not influence cerebral blood flow changes in experimental pneumococcal meningitis. Brain Research, 1994, 644, 25-31.	2.2	19