
## Timothy S Fisher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12059597/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Double-negative-index ceramic aerogels for thermal superinsulation. Science, 2019, 363, 723-727.                                                                                   | 12.6 | 429       |
| 2  | Enhancement of thermal interface materials with carbon nanotube arrays. International Journal of<br>Heat and Mass Transfer, 2006, 49, 1658-1666.                                   | 4.8  | 426       |
| 3  | Nanoscale design to enable the revolution in renewable energy. Energy and Environmental Science, 2009, 2, 559.                                                                     | 30.8 | 348       |
| 4  | A Review of Grapheneâ€Based Electrochemical Microsupercapacitors. Electroanalysis, 2014, 26, 30-51.                                                                                | 2.9  | 317       |
| 5  | Graphene-based hybrid materials and devices for biosensing. Advanced Drug Delivery Reviews, 2011, 63, 1352-1360.                                                                   | 13.7 | 267       |
| 6  | Electrochemical Biosensor of Nanocube-Augmented Carbon Nanotube Networks. ACS Nano, 2009, 3, 37-44.                                                                                | 14.6 | 242       |
| 7  | 3-Omega Measurements of Vertically Oriented Carbon Nanotubes on Silicon. Journal of Heat Transfer, 2006, 128, 1109-1113.                                                           | 2.1  | 212       |
| 8  | Photoacoustic characterization of carbon nanotube array thermal interfaces. Journal of Applied Physics, 2007, 101, 054313.                                                         | 2.5  | 208       |
| 9  | Nanostructuring Platinum Nanoparticles on Multilayered Graphene Petal Nanosheets for<br>Electrochemical Biosensing. Advanced Functional Materials, 2012, 22, 3399-3405.            | 14.9 | 199       |
| 10 | MnO2-coated graphitic petals for supercapacitor electrodes. Journal of Power Sources, 2013, 227, 254-259.                                                                          | 7.8  | 195       |
| 11 | Mechanically robust honeycomb graphene aerogel multifunctional polymer composites. Carbon, 2015, 93, 659-670.                                                                      | 10.3 | 182       |
| 12 | Hyperbolically Patterned 3D Graphene Metamaterial with Negative Poisson's Ratio and Superelasticity.<br>Advanced Materials, 2016, 28, 2229-2237.                                   | 21.0 | 178       |
| 13 | A Review of Heat Transfer Issues in Hydrogen Storage Technologies. Journal of Heat Transfer, 2005, 127, 1391-1399.                                                                 | 2.1  | 164       |
| 14 | Bioinspired leaves-on-branchlet hybrid carbon nanostructure for supercapacitors. Nature<br>Communications, 2018, 9, 790.                                                           | 12.8 | 154       |
| 15 | Hierarchical Ni–Co Hydroxide Petals on Mechanically Robust Graphene Petal Foam for Highâ€Energy<br>Asymmetric Supercapacitors. Advanced Functional Materials, 2016, 26, 5460-5470. | 14.9 | 151       |
| 16 | Graphitic Petal Electrodes for Allâ€Solidâ€State Flexible Supercapacitors. Advanced Energy Materials,<br>2014, 4, 1300515.                                                         | 19.5 | 147       |
| 17 | Ionic winds for locally enhanced cooling. Journal of Applied Physics, 2007, 102, .                                                                                                 | 2.5  | 145       |
| 18 | Increased real contact in thermal interfaces: A carbon nanotube/foil material. Applied Physics Letters, 2007, 90, 093513.                                                          | 3.3  | 144       |

| #  | Article                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Mechanism of thermal conductivity reduction in few-layer graphene. Journal of Applied Physics, 2011, 110, .                                                                                      | 2.5  | 135       |
| 20 | Enhancement of external forced convection by ionic wind. International Journal of Heat and Mass Transfer, 2008, 51, 6047-6053.                                                                   | 4.8  | 131       |
| 21 | Extraordinary Sensitivity of the Electronic Structure and Properties of Single-Walled Carbon<br>Nanotubes to Molecular Charge-Transfer. Journal of Physical Chemistry C, 2008, 112, 13053-13056. | 3.1  | 128       |
| 22 | Contact mechanics and thermal conductance of carbon nanotube array interfaces. International<br>Journal of Heat and Mass Transfer, 2009, 52, 3490-3503.                                          | 4.8  | 127       |
| 23 | Plasma-grown graphene petals templating Ni–Co–Mn hydroxide nanoneedles for high-rate and<br>long-cycle-life pseudocapacitive electrodes. Journal of Materials Chemistry A, 2015, 3, 22940-22948. | 10.3 | 101       |
| 24 | Parametric study of synthesis conditions in plasma-enhanced CVD of high-quality single-walled carbon nanotubes. Carbon, 2006, 44, 10-18.                                                         | 10.3 | 98        |
| 25 | Amorphous Boron Nitride: A Universal, Ultrathin Dielectric For 2D Nanoelectronics. Advanced<br>Functional Materials, 2016, 26, 2640-2647.                                                        | 14.9 | 90        |
| 26 | Synthesis of few-layer, large area hexagonal-boron nitride by pulsed laser deposition. Thin Solid Films, 2014, 572, 245-250.                                                                     | 1.8  | 85        |
| 27 | Optical properties of ordered vertical arrays of multi-walled carbon nanotubes from FDTD simulations. Optics Express, 2010, 18, 6347.                                                            | 3.4  | 82        |
| 28 | Thermal transport across metal silicide-silicon interfaces: First-principles calculations and Green's function transport simulations. Physical Review B, 2017, 95, .                             | 3.2  | 76        |
| 29 | Effects of a carbon nanotube layer on electrical contact resistance between copper substrates.<br>Nanotechnology, 2006, 17, 2294-2303.                                                           | 2.6  | 74        |
| 30 | Measurement of metal/carbon nanotube contact resistance by adjusting contact length using laser ablation. Nanotechnology, 2008, 19, 125703.                                                      | 2.6  | 70        |
| 31 | Microwaveâ€Assisted Surface Synthesis of a Boron–Carbon–Nitrogen Foam and its Desorption<br>Enthalpy. Advanced Functional Materials, 2012, 22, 3682-3690.                                        | 14.9 | 69        |
| 32 | Pool Boiling Performance Comparison of Smooth and Sintered Copper Surfaces with and Without<br>Carbon Nanotubes. Nanoscale and Microscale Thermophysical Engineering, 2011, 15, 133-150.         | 2.6  | 67        |
| 33 | Flyweight 3D Graphene Scaffolds with Microinterface Barrier-Derived Tunable Thermal Insulation and<br>Flame Retardancy. ACS Applied Materials & Interfaces, 2017, 9, 14232-14241.                | 8.0  | 67        |
| 34 | Graphene: An effective oxidation barrier coating for liquid and two-phase cooling systems. Corrosion Science, 2013, 69, 5-10.                                                                    | 6.6  | 64        |
| 35 | Dendrimer-assisted controlled growth of carbon nanotubes for enhanced thermal interface conductance. Nanotechnology, 2007, 18, 385303.                                                           | 2.6  | 60        |
| 36 | Scalable Production of Integrated Graphene Nanoarchitectures for Ultrafast Solar-Thermal Conversion and Vapor Generation. Matter, 2019, 1, 1017-1032.                                            | 10.0 | 60        |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Vertical single- and double-walled carbon nanotubes grown from modified porous anodic alumina templates. Nanotechnology, 2006, 17, 3925-3929.                                                                            | 2.6  | 59        |
| 38 | Contiguous Petal-like Carbon Nanosheet Outgrowths from Graphite Fibers by Plasma CVD. ACS Applied<br>Materials & Interfaces, 2010, 2, 644-648.                                                                           | 8.0  | 58        |
| 39 | Electrochemical glutamate biosensing with nanocube and nanosphere augmented single-walled carbon nanotube networks: a comparative study. Journal of Materials Chemistry, 2011, 21, 11224.                                | 6.7  | 58        |
| 40 | Graphene nanopetal wire supercapacitors with high energy density and thermal durability. Nano<br>Energy, 2017, 38, 127-136.                                                                                              | 16.0 | 58        |
| 41 | Simulation of phonon transmission through graphene and graphene nanoribbons with a Green's<br>function method. Journal of Applied Physics, 2010, 108, .                                                                  | 2.5  | 55        |
| 42 | Electrochemical Glucose Biosensor of Platinum Nanospheres Connected by Carbon Nanotubes.<br>Journal of Diabetes Science and Technology, 2010, 4, 312-319.                                                                | 2.2  | 52        |
| 43 | Thermal Effects in Supercapacitors. SpringerBriefs in Applied Sciences and Technology, 2015, , .                                                                                                                         | 0.4  | 50        |
| 44 | Transforming the Fabrication and Biofunctionalization of Gold Nanoelectrode Arrays into Versatile<br>Electrochemical Glucose Biosensors. ACS Applied Materials & Interfaces, 2011, 3, 1765-1770.                         | 8.0  | 48        |
| 45 | Characterization of Metallically Bonded Carbon Nanotube-Based Thermal Interface Materials Using a<br>High Accuracy 1D Steady-State Technique. Journal of Electronic Packaging, Transactions of the ASME,<br>2012, 134, . | 1.8  | 46        |
| 46 | Effects of Growth Temperature on Carbon Nanotube Array Thermal Interfaces. Journal of Heat<br>Transfer, 2008, 130, .                                                                                                     | 2.1  | 45        |
| 47 | Graphitic Petal Microâ€Supercapacitor Electrodes for Ultraâ€High Power Density. Energy Technology, 2014, 2, 897-905.                                                                                                     | 3.8  | 45        |
| 48 | Electron-phonon coupling and thermal conductance at a metal-semiconductor interface:<br>First-principles analysis. Journal of Applied Physics, 2015, 117, .                                                              | 2.5  | 45        |
| 49 | Photo- and thermionic emission from potassium-intercalated carbon nanotube arrays. Journal of<br>Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 423-434.                                 | 1.2  | 44        |
| 50 | Spectral phonon conduction and dominant scattering pathways in graphene. Journal of Applied Physics, 2011, 110, 094312.                                                                                                  | 2.5  | 44        |
| 51 | Heterogeneous wetting surfaces with graphitic petal-decorated carbon nanotubes for enhanced flow boiling. International Journal of Heat and Mass Transfer, 2015, 87, 380-389.                                            | 4.8  | 44        |
| 52 | Highly porous three-dimensional carbon nanotube foam as a freestanding anode for a lithium-ion battery. RSC Advances, 2016, 6, 79734-79744.                                                                              | 3.6  | 44        |
| 53 | Dendrimer-Templated Fe Nanoparticles for the Growth of Single-Wall Carbon Nanotubes by Plasma-Enhanced CVD. Journal of Physical Chemistry B, 2006, 110, 10636-10644.                                                     | 2.6  | 43        |
| 54 | Atomic Layer Deposition of FeO on Pt(111) by Ferrocene Adsorption and Oxidation. Chemistry of Materials, 2015, 27, 5915-5924.                                                                                            | 6.7  | 43        |

| #  | Article                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Effects of Carbon Nanotube-Tethered Nanosphere Density on Amperometric Biosensing: Simulation and Experiment. Journal of Physical Chemistry C, 2011, 115, 20896-20904.  | 3.1  | 42        |
| 56 | Carbon Nanotube Array Thermal Interfaces for High-Temperature Silicon Carbide Devices. Nanoscale and Microscale Thermophysical Engineering, 2008, 12, 228-237.          | 2.6  | 40        |
| 57 | Athermal jamming of soft frictionless Platonic solids. Physical Review E, 2010, 82, 051304.                                                                             | 2.1  | 39        |
| 58 | Columnar order in jammed LiFePO4 cathodes: ion transport catastrophe and its mitigation. Physical<br>Chemistry Chemical Physics, 2012, 14, 7040.                        | 2.8  | 37        |
| 59 | Synthesis of chemically bonded CNT–graphene heterostructure arrays. RSC Advances, 2012, 2, 8250.                                                                        | 3.6  | 37        |
| 60 | Reduced work function of graphene by metal adatoms. Applied Surface Science, 2017, 394, 98-107.                                                                         | 6.1  | 36        |
| 61 | Active cooling of a metal hydride system for hydrogen storage. International Journal of Heat and<br>Mass Transfer, 2010, 53, 1326-1332.                                 | 4.8  | 34        |
| 62 | Controlled thin graphitic petal growth on oxidized silicon. Diamond and Related Materials, 2012, 27-28, 1-9.                                                            | 3.9  | 34        |
| 63 | Synthesis of Porous Ni–Co–Mn Oxide Nanoneedles and the Temperature Dependence of Their<br>Pseudocapacitive Behavior. Frontiers in Energy Research, 2015, 3, .           | 2.3  | 34        |
| 64 | Large-scale synthesis and activation of polygonal carbon nanofibers with thin ribbon-like structures for supercapacitor electrodes. RSC Advances, 2015, 5, 31837-31844. | 3.6  | 34        |
| 65 | Spill-SOS: Self-Pumping Siphon-Capillary Oil Recovery. ACS Nano, 2019, 13, 13027-13036.                                                                                 | 14.6 | 34        |
| 66 | Flow Boiling in a Micro-Channel Coated With Carbon Nanotubes. IEEE Transactions on Components and Packaging Technologies, 2009, 32, 639-649.                            | 1.3  | 33        |
| 67 | Au nanoparticles on graphitic petal arrays for surface-enhanced Raman spectroscopy. Applied Physics<br>Letters, 2010, 97, 133108.                                       | 3.3  | 33        |
| 68 | On the accuracy of classical and long wavelength approximations for phonon transport in graphene.<br>Journal of Applied Physics, 2011, 110, .                           | 2.5  | 33        |
| 69 | Process optimization of graphene growth in a roll-to-roll plasma CVD system. AIP Advances, 2017, 7, .                                                                   | 1.3  | 33        |
| 70 | Phonon-eigenspectrum-based formulation of the atomistic Green's function method. Physical Review B, 2017, 96, .                                                         | 3.2  | 33        |
| 71 | Freestanding vertically oriented single-walled carbon nanotubes synthesized using microwave plasma-enhanced CVD. Carbon, 2006, 44, 2758-2763.                           | 10.3 | 32        |
| 72 | Photonically enhanced flow boiling in a channel coated with carbon nanotubes. Applied Physics<br>Letters, 2012, 100, .                                                  | 3.3  | 32        |

| #  | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Improved Dehydrogenation Properties of Ti-Doped LiAlH4: Role of Ti Precursors. Journal of Physical<br>Chemistry C, 2012, 116, 21886-21894.                                                                                                          | 3.1  | 32        |
| 74 | Thermal transport across metal silicide-silicon interfaces: An experimental comparison between epitaxial and nonepitaxial interfaces. Physical Review B, 2017, 95, .                                                                                | 3.2  | 32        |
| 75 | Plasma-Made Graphene Nanostructures with Molecularly Dispersed F and Na Sites for Solar<br>Desalination of Oil-Contaminated Seawater with Complete In-Water and In-Air Oil Rejection. ACS<br>Applied Materials & Interfaces, 2020, 12, 38512-38521. | 8.0  | 32        |
| 76 | Lithography-Free in Situ Pd Contacts to Templated Single-Walled Carbon Nanotubes. Nano Letters, 2006, 6, 2712-2717.                                                                                                                                 | 9.1  | 31        |
| 77 | Thermoelectric topping cycles for power plants to eliminate cooling water consumption. Energy Conversion and Management, 2014, 84, 244-252.                                                                                                         | 9.2  | 31        |
| 78 | Temporally and spatially resolved plasma spectroscopy in pulsed laser deposition of ultra-thin boron nitride films. Journal of Applied Physics, 2015, 117, .                                                                                        | 2.5  | 31        |
| 79 | Dendrimer-assisted low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Chemical Communications, 2006, , 2899.                                                                                                  | 4.1  | 30        |
| 80 | lsostaticity of constraints in amorphous jammed systems of soft frictionless Platonic solids. Physical<br>Review E, 2011, 84, 030301.                                                                                                               | 2.1  | 30        |
| 81 | Models for metal hydride particle shape, packing, and heat transfer. International Journal of<br>Hydrogen Energy, 2012, 37, 13417-13428.                                                                                                            | 7.1  | 30        |
| 82 | Variable-cell method for stress-controlled jamming of athermal, frictionless grains. Physical Review<br>E, 2014, 89, 042203.                                                                                                                        | 2.1  | 30        |
| 83 | Symmetric All-Solid-State Supercapacitor Operating at 1.5 V Using a Redox-Active Gel Electrolyte. ACS<br>Applied Energy Materials, 2018, 1, 5800-5809.                                                                                              | 5.1  | 30        |
| 84 | Harnessing the thermogalvanic effect of the ferro/ferricyanide redox couple in a thermally chargeable supercapacitor. Electrochimica Acta, 2018, 281, 357-369.                                                                                      | 5.2  | 30        |
| 85 | In situ characterization of metal hydride thermal transport properties. International Journal of<br>Hydrogen Energy, 2010, 35, 614-621.                                                                                                             | 7.1  | 29        |
| 86 | Charge storage in mesoscopic graphitic islands fabricated using AFM bias lithography.<br>Nanotechnology, 2011, 22, 245302.                                                                                                                          | 2.6  | 28        |
| 87 | Simulation of thermal conductance across dimensionally mismatched graphene interfaces. Journal of Applied Physics, 2010, 108, .                                                                                                                     | 2.5  | 27        |
| 88 | Carbon nanowalls amplify the surface-enhanced Raman scattering from Ag nanoparticles.<br>Nanotechnology, 2011, 22, 395704.                                                                                                                          | 2.6  | 27        |
| 89 | Experimental Characterization of Capillary-Fed Carbon Nanotube Vapor Chamber Wicks. Journal of<br>Heat Transfer, 2013, 135, .                                                                                                                       | 2.1  | 27        |
| 90 | Carbon nanotube arrays decorated with multi-layer graphene-nanopetals enhance mechanical strength and durability. Carbon, 2015, 84, 236-245.                                                                                                        | 10.3 | 27        |

6

| #   | Article                                                                                                                                                                                                | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Palladium Thiolate Bonding of Carbon Nanotube Thermal Interfaces. Journal of Electronic Packaging,<br>Transactions of the ASME, 2011, 133, .                                                           | 1.8  | 25        |
| 92  | Metal functionalization of carbon nanotubes for enhanced sintered powder wicks. International<br>Journal of Heat and Mass Transfer, 2013, 59, 372-383.                                                 | 4.8  | 25        |
| 93  | Characterization of vertically oriented carbon nanotube arrays as high-temperature thermal interface materials. International Journal of Heat and Mass Transfer, 2017, 106, 1287-1293.                 | 4.8  | 25        |
| 94  | Electrical and Thermal Interface Conductance of Carbon Nanotubes Grown under Direct Current Bias<br>Voltage. Journal of Physical Chemistry C, 2008, 112, 19727-19733.                                  | 3.1  | 23        |
| 95  | Toward surround gates on vertical single-walled carbon nanotube devices. Journal of Vacuum<br>Science & Technology B, 2009, 27, 821.                                                                   | 1.3  | 22        |
| 96  | Thermionic emission energy distribution from nanocrystalline diamond films for direct thermal-electrical energy conversion applications. Journal of Applied Physics, 2009, 106, 043716.                | 2.5  | 22        |
| 97  | Room-temperature ferromagnetism in graphitic petal arrays. Nanoscale, 2011, 3, 900.                                                                                                                    | 5.6  | 22        |
| 98  | Characterization and nanostructured enhancement of boiling incipience in capillary-fed, ultra-thin sintered powder wicks. , 2012, , .                                                                  |      | 22        |
| 99  | In-place fabrication of nanowire electrode arrays for vertical nanoelectronics on Si substrates.<br>Journal of Vacuum Science & Technology B, 2007, 25, 343.                                           | 1.3  | 21        |
| 100 | Controlled Decoration of Single-Walled Carbon Nanotubes with Pd Nanocubes. Journal of Physical Chemistry C, 2007, 111, 13756-13762.                                                                    | 3.1  | 21        |
| 101 | Thermionic emission from surface-terminated nanocrystalline diamond. Diamond and Related<br>Materials, 2006, 15, 1601-1608.                                                                            | 3.9  | 20        |
| 102 | Thermionic and Photo-Excited Electron Emission for Energy-Conversion Processes. Frontiers in Energy Research, 2014, 2, .                                                                               | 2.3  | 20        |
| 103 | Effects of Graphene Nanopetal Outgrowths on Internal Thermal Interface Resistance in Composites.<br>ACS Applied Materials & Interfaces, 2016, 8, 6678-6684.                                            | 8.0  | 20        |
| 104 | Versatile technique for assessing thickness of 2D layered materials by XPS. Nanotechnology, 2018, 29, 115705.                                                                                          | 2.6  | 20        |
| 105 | Optimization of carbon nanotube synthesis from porous anodic Al–Fe–Al templates. Carbon, 2007, 45,<br>2290-2296.                                                                                       | 10.3 | 19        |
| 106 | Independently addressable fields of porous anodic alumina embedded in SiO[sub 2] on Si. Applied Physics Letters, 2008, 92, 013122.                                                                     | 3.3  | 19        |
| 107 | Effects of Titanium-Containing Additives on the Dehydrogenation Properties of LiAlH <sub>4</sub> : A<br>Computational and Experimental Study. Journal of Physical Chemistry C, 2012, 116, 22327-22335. | 3.1  | 18        |
| 108 | Improved Efficiency of Dye-Sensitized Solar Cells Using a Vertically Aligned Carbon Nanotube Counter<br>Electrode. Journal of Solar Energy Engineering, Transactions of the ASME, 2010, 132, .         | 1.8  | 17        |

| #   | Article                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Heat generation in all-solid-state supercapacitors with graphene electrodes and gel electrolytes.<br>Electrochimica Acta, 2019, 303, 341-353.                                                 | 5.2  | 17        |
| 110 | Solar–Thermal Production of Graphitic Carbon and Hydrogen via Methane Decomposition. Energy<br>& Fuels, 2022, 36, 3920-3928.                                                                  | 5.1  | 17        |
| 111 | Modeling of subcontinuum thermal transport across semiconductor-gas interfaces. Journal of<br>Applied Physics, 2009, 106, .                                                                   | 2.5  | 16        |
| 112 | Hardware-in-the-Loop Validation of Advanced Fuel Thermal Management Control. Journal of<br>Thermophysics and Heat Transfer, 2017, 31, 901-909.                                                | 1.6  | 16        |
| 113 | Correlating electrical resistance to growth conditions for multiwalled carbon nanotubes. Applied Physics Letters, 2007, 91, 093105.                                                           | 3.3  | 15        |
| 114 | Thermal Performance of Carbon Nanotube Enhanced Vapor Chamber Wicks. , 2010, , .                                                                                                              |      | 15        |
| 115 | Thermal Contact Conductance Enhancement With Carbon Nanotube Arrays. , 2004, , 559.                                                                                                           |      | 14        |
| 116 | Thermomechanical and Thermal Contact Characteristics of Bismuth Telluride Films Electrodeposited on Carbon Nanotube Arrays. Advanced Materials, 2009, 21, 4280-4283.                          | 21.0 | 14        |
| 117 | Optical properties of ordered carbon nanotube arrays grown in porous anodic alumina templates.<br>Optics Express, 2013, 21, 22053.                                                            | 3.4  | 14        |
| 118 | XPS and Raman characterization of single-walled carbon nanotubes grown from pretreated<br>Fe <sub>2</sub> O <sub>3</sub> nanoparticles. Journal Physics D: Applied Physics, 2008, 41, 165306. | 2.8  | 13        |
| 119 | Thermal and Electrical Conductivities of Nanocrystalline Nickel Microbridges. Journal of<br>Microelectromechanical Systems, 2012, 21, 850-858.                                                | 2.5  | 13        |
| 120 | Carbon Nanotube Arrays for Enhanced Thermal Interfaces to Thermoelectric Modules. Journal of Thermophysics and Heat Transfer, 2013, 27, 474-481.                                              | 1.6  | 13        |
| 121 | Rollâ€ŧoâ€Roll Production of Graphitic Petals on Carbon Fiber Tow. Advanced Engineering Materials,<br>2018, 20, 1800004.                                                                      | 3.5  | 13        |
| 122 | Continuous glucose monitoring with a flexible biosensor and wireless data acquisition system.<br>Sensors and Actuators B: Chemical, 2018, 275, 237-243.                                       | 7.8  | 13        |
| 123 | Vertical graphene nano-antennas for solar-to-hydrogen energy conversion. Solar Energy, 2020, 208,<br>379-387.                                                                                 | 6.1  | 13        |
| 124 | Assemblies of Carbon Nanotubes and Unencapsulated Sub-10-nm Gold Nanoparticles. Small, 2007, 3, 1266-1271.                                                                                    | 10.0 | 12        |
| 125 | Atomistic simulation of phonon and magnon thermal transport across the ferromagnetic-paramagnetic transition. Physical Review B, 2020, 101, .                                                 | 3.2  | 12        |
|     |                                                                                                                                                                                               |      |           |

126 Carbon Nanotube Array Thermal Interfaces Enhanced With Paraffin Wax. , 2008, , .

11

| #   | Article                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Slow creep in soft granular packings. Soft Matter, 2017, 13, 3411-3421.                                                                                                      | 2.7 | 11        |
| 128 | Thermal boundary resistance predictions with non-equilibrium Green's function and molecular dynamics simulations. Applied Physics Letters, 2019, 115, .                      | 3.3 | 11        |
| 129 | Electrothermal Bonding of Carbon Nanotubes to Glass. Journal of the Electrochemical Society, 2008, 155, K161.                                                                | 2.9 | 10        |
| 130 | Design and Validation of a High-Temperature Thermal Interface Resistance Measurement System.<br>Journal of Thermal Science and Engineering Applications, 2016, 8, .          | 1.5 | 10        |
| 131 | Generalized Compact Modeling of Nanoparticle-Based Amperometric Glucose Biosensors. IEEE<br>Transactions on Electron Devices, 2016, 63, 4924-4932.                           | 3.0 | 10        |
| 132 | Ragone Relations for Thermal Energy Storage Technologies. Frontiers in Mechanical Engineering, 2019, 5, .                                                                    | 1.8 | 10        |
| 133 | Experimental Study of Energy Exchange Attending Electron Emission from Carbon Nanotubes. Heat<br>Transfer Engineering, 2008, 29, 395-404.                                    | 1.9 | 9         |
| 134 | Self-assembled CNT circuits with ohmic contacts using Pd hexadecanethiolate as in situ solder.<br>Nanoscale, 2009, 1, 271.                                                   | 5.6 | 9         |
| 135 | Catalytic influence of Ni-based additives on the dehydrogenation properties of ball milled MgH <sub>2</sub> . Journal of Materials Research, 2011, 26, 2725-2734.            | 2.6 | 9         |
| 136 | Combined Microstructure and Heat Conduction Modeling of Heterogeneous Interfaces and Materials.<br>Journal of Heat Transfer, 2013, 135, .                                    | 2.1 | 9         |
| 137 | Influence of Temperature on Supercapacitor Performance. SpringerBriefs in Applied Sciences and Technology, 2015, , 71-114.                                                   | 0.4 | 9         |
| 138 | Scalable Coating of Singleâ€Source Nickel Hexadecanethiolate Precursor on 3D Graphitic Petals for Asymmetric Supercapacitors. Energy Technology, 2017, 5, 740-746.           | 3.8 | 9         |
| 139 | Thermal conductance at nanoscale amorphous boron nitride/metal interfaces. Surface and Coatings<br>Technology, 2020, 397, 126017.                                            | 4.8 | 9         |
| 140 | Carbon nanotube thermal interfaces on gadolinium foil. International Journal of Heat and Mass<br>Transfer, 2012, 55, 6716-6722.                                              | 4.8 | 8         |
| 141 | Response of Phase-Change-Material-Filled Porous Foams Under Transient Heating Conditions. Journal of Thermophysics and Heat Transfer, 2016, 30, 880-889.                     | 1.6 | 8         |
| 142 | Brazed Carbon Nanotube Arrays: Decoupling Thermal Conductance and Mechanical Rigidity. Advanced Materials Interfaces, 2017, 4, 1601042.                                      | 3.7 | 8         |
| 143 | A continuum model of heat transfer in electrical double-layer capacitors with porous electrodes under constant-current cycling. Journal of Power Sources, 2021, 511, 230404. | 7.8 | 8         |
| 144 | Accurate Thermal Diffusivity Measurements Using a Modified Ångström's Method With Bayesian<br>Statistics. Journal of Heat Transfer, 2020, 142, .                             | 2.1 | 8         |

| #   | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Influence of Bias-Enhanced Nucleation on Thermal Conductance Through Chemical Vapor Deposited Diamond Films. IEEE Transactions on Components and Packaging Technologies, 2008, 31, 46-53.                                           | 1.3  | 7         |
| 146 | Preferential Biofunctionalization of Carbon Nanotubes Grown by Microwave Plasma-Enhanced CVD.<br>Journal of Physical Chemistry C, 2010, 114, 9596-9602.                                                                             | 3.1  | 7         |
| 147 | Shot Noise Thermometry for Thermal Characterization of Templated Carbon Nanotubes. IEEE<br>Transactions on Components and Packaging Technologies, 2010, 33, 178-183.                                                                | 1.3  | 7         |
| 148 | Conduction in Jammed Systems of Tetrahedra. Journal of Heat Transfer, 2013, 135, .                                                                                                                                                  | 2.1  | 7         |
| 149 | Electroreflectance imaging of gold–H <sub>3</sub> PO <sub>4</sub> supercapacitors. Part I:<br>experimental methodology. Analyst, The, 2016, 141, 1448-1461.                                                                         | 3.5  | 7         |
| 150 | Combined Microstructure and Heat Transfer Modeling of Carbon Nanotube Thermal Interface<br>Materials1. Journal of Heat Transfer, 2016, 138, .                                                                                       | 2.1  | 7         |
| 151 | Magnetothermoelectric effects in graphene and their dependence on scatterer concentration, magnetic field, and band gap. Journal of Applied Physics, 2017, 121, 125113.                                                             | 2.5  | 7         |
| 152 | Photonically excited electron emission from modified graphitic nanopetal arrays. Journal of Applied Physics, 2013, 113, 193710.                                                                                                     | 2.5  | 6         |
| 153 | Growth of contiguous graphite fins from thermally conductive graphite fibers. Carbon, 2014, 69, 424-436.                                                                                                                            | 10.3 | 6         |
| 154 | Synthesis and thermionic emission properties of graphitic carbon nanofibres supported on Si wafers or carbon felt. Nanotechnology, 2007, 18, 325606.                                                                                | 2.6  | 5         |
| 155 | Laser Diagnostics of Plasma in Synthesis of Graphene-Based Materials. Journal of Micro and Nano-Manufacturing, 2014, 2, .                                                                                                           | 0.7  | 5         |
| 156 | Modeling Thermal Storage in Wax-Impregnated Foams with a Pore-Scale Submodel. Journal of<br>Thermophysics and Heat Transfer, 2015, 29, 812-819.                                                                                     | 1.6  | 5         |
| 157 | Thermal Management in Electrochemical Energy Storage Systems. SpringerBriefs in Applied Sciences and Technology, 2015, , 1-10.                                                                                                      | 0.4  | 5         |
| 158 | Optical properties of thin graphitic nanopetal arrays. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 158, 84-90.                                                                                               | 2.3  | 5         |
| 159 | Mechanical Behavior of Carbon Nanotube Forests Grown With Plasma Enhanced Chemical Vapor<br>Deposition: Pristine and Conformally Coated. Journal of Engineering Materials and Technology,<br>Transactions of the ASME, 2017, 139, . | 1.4  | 5         |
| 160 | Thermal boundary conductance across Co/Cu interfaces with spin–lattice interactions. Journal of Applied Physics, 2021, 130, 235108.                                                                                                 | 2.5  | 5         |
| 161 | New approaches for error estimation and adaptivity for 2D potential boundary element methods.<br>International Journal for Numerical Methods in Engineering, 2003, 56, 117-144.                                                     | 2.8  | 4         |
| 162 | Length and temperature dependent 1/ <i>f</i> noise in vertical single-walled carbon nanotube arrays.<br>Journal of Applied Physics, 2013, 113, .                                                                                    | 2.5  | 4         |

| #   | Article                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Guidance of cell adhesion and migration by graphitic nanopetals on carbon fibers. Materials Letters, 2016, 184, 211-215.                                                         | 2.6 | 4         |
| 164 | Rapid Analytical Instrumentation for Electrochemical Impedance Spectroscopy Measurements. Journal of the Electrochemical Society, 2020, 167, 027545.                             | 2.9 | 4         |
| 165 | High-Temperature Thermal Diffusivity Measurements Using a Modified Ãngström's Method With<br>Transient Infrared Thermography. Journal of Heat Transfer, 2022, 144, .             | 2.1 | 4         |
| 166 | Design, Synthesis, and Performance of a Carbon Nanotube/Metal Foil Thermal Interface Material. ,<br>2007, , .                                                                    |     | 3         |
| 167 | First Principles and Finite Element Predictions of Radiative Properties of Nanostructure Arrays:<br>Single-Walled Carbon Nanotube Arrays. Journal of Heat Transfer, 2014, 136, . | 2.1 | 3         |
| 168 | Electroreflectance imaging of gold-H3PO4 supercapacitors. Part II: microsupercapacitor ageing characterization. Analyst, The, 2016, 141, 1462-1471.                              | 3.5 | 3         |
| 169 | Work Function Characterization of Potassium-Intercalated, Boron Nitride Doped Graphitic Petals.<br>Frontiers in Mechanical Engineering, 2017, 3, .                               | 1.8 | 3         |
| 170 | High-throughput transient thermal interface testing method using time-domain thermal response.<br>International Journal of Heat and Mass Transfer, 2018, 127, 228-233.           | 4.8 | 3         |
| 171 | Control-Oriented Modeling of Integrated Flash Boiling for Rapid Transient Heat Dissipation. Journal of Thermophysics and Heat Transfer, 2019, 33, 817-829.                       | 1.6 | 3         |
| 172 | Thermal Management Analysis of On-Board High-Pressure Metal Hydride Systems. , 2006, , .                                                                                         |     | 3         |
| 173 | Thermal Modeling of Supercapacitors. SpringerBriefs in Applied Sciences and Technology, 2015, , 115-141.                                                                         | 0.4 | 3         |
| 174 | Concentrated solar-thermal methane pyrolysis in a porous substrate: Yield analysis via infrared laser absorption. Proceedings of the Combustion Institute, 2023, 39, 5581-5589.  | 3.9 | 3         |
| 175 | A Heat Transfer Model for Graphene Deposition on Ni and Cu Foils in a Roll-to-Roll Plasma Chemical<br>Vapor Deposition System. Journal of Heat Transfer, 2021, 143, .            | 2.1 | 2         |
| 176 | Thermionic Emission From Potassium-Intercalated Carbon Nanotube Arrays. , 2007, , .                                                                                              |     | 1         |
| 177 | Physics based models for metal hydride particle morphology, distribution, and effective thermal conductivity. Materials Research Society Symposia Proceedings, 2009, 1172, 106.  | 0.1 | 1         |
| 178 | Characterization of Metallically Bonded Carbon Nanotube-Based Thermal Interface Materials Using a<br>High Accuracy 1D Steady-State Technique. , 2011, , .                        |     | 1         |
| 179 | Effect of Gamma-Ray Irradiation on the Thermal Contact Conductance of Carbon Nanotube Thermal<br>Interface Materials. , 2013, , .                                                |     | 1         |
| 180 | Thermally driven squeezed-film cooling with carbon nanotube-coated gadolinium shuttles.<br>International Journal of Heat and Mass Transfer, 2014, 78, 1199-1207.                 | 4.8 | 1         |

| #   | Article                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Influence of Temperature on Supercapacitor Components. SpringerBriefs in Applied Sciences and Technology, 2015, , 27-69.                                                                    | 0.4 | 1         |
| 182 | Rapid colorimetric analysis of graphene on copper. Corrosion Science, 2018, 138, 319-325.                                                                                                   | 6.6 | 1         |
| 183 | Effect of DC Bias on Microwave Plasma Enhanced Chemical Vapor Deposition Synthesis of<br>Single-Walled Carbon Nanotubes. , 2005, , .                                                        |     | 1         |
| 184 | Application of new error estimators based on gradient recovery and external domain approaches to 2D elastostatics problems. Engineering Analysis With Boundary Elements, 2005, 29, 963-975. | 3.7 | 0         |
| 185 | Thermal Contact Resistance of a Silicon Nanowire on a Substrate. , 2007, , 1007.                                                                                                            |     | Ο         |
| 186 | Shot noise thermometry with carbon nanotubes. Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2008, , .                                            | 0.0 | 0         |
| 187 | Photo- and Thermionic Emission From Potassium-Intercalated Single-Walled Carbon Nanotube Arrays. ,<br>2008, , .                                                                             |     | Ο         |
| 188 | Biosensor Capture Kinetics Model of Nanocube-Augmented Carbon Nanotube Networks. Materials<br>Research Society Symposia Proceedings, 2009, 1236, 1.                                         | 0.1 | 0         |
| 189 | Improved Efficiency of Dye Sensitized Solar Cells Using Aligned Carbon Nanotubes. , 2009, , .                                                                                               |     | Ο         |
| 190 | Carbon Nanotube Interfaces for Magneto Thermoelectric Actuation. , 2010, , .                                                                                                                |     | 0         |
| 191 | Thermal Conductivity Reduction in Few-Layer Graphene. , 2011, , .                                                                                                                           |     | Ο         |
| 192 | Low-Frequency Electrical Noise Thermometry for Micro- and Nano-Scale Devices. , 2011, , .                                                                                                   |     | 0         |
| 193 | Laser Diagnostics of Plasma in Synthesis of Graphene-Based Materials. , 2013, , .                                                                                                           |     | Ο         |
| 194 | Hydrophilic CNT-Sintered Copper Composite Wick for Enhanced Cooling. , 2014, , 267-288.                                                                                                     |     | 0         |
| 195 | Hydrophilic CNT-Sintered Copper Composite Wick for Enhanced Cooling. , 2014, , 267-288.                                                                                                     |     | Ο         |
| 196 | HYDROPHILIC CNT-SINTERED COPPER COMPOSITE WICK FOR ENHANCED COOLING. WSPC Series in Advanced Integration and Packaging, 2014, , 307-331.                                                    | 0.0 | 0         |
| 197 | H2 Mole Fraction Measurements in a Microwave Plasma Using Coherent Anti-Stokes Raman Scattering<br>Spectroscopy. Journal of Micro and Nano-Manufacturing, 2016, 4, .                        | 0.7 | 0         |
| 198 | Plasma Chemical and Physical Vapour Deposition Methods and Diagnostics for 2D Materials. , 2017, , 275-315.                                                                                 |     | 0         |

| #   | Article                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Damping of oscillatory temperature profiles with a thermal storage device. , 2021, , .                        |     | 0         |
| 200 | Thermal Considerations for Supercapacitors. SpringerBriefs in Applied Sciences and Technology, 2015, , 11-26. | 0.4 | 0         |