
## Kevin J Sampson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12057564/publications.pdf Version: 2024-02-01



KEVIN LSAMDSON

| #  | Article                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Antiarrhythmic Hit to Lead Refinement in a Dish Using Patient-Derived iPSC Cardiomyocytes. Journal of<br>Medicinal Chemistry, 2021, 64, 5384-5403.                                                              | 6.4  | 8         |
| 2  | Human iPSC-derived cardiomyocytes and pyridyl-phenyl mexiletine analogs. Bioorganic and Medicinal Chemistry Letters, 2021, 46, 128162.                                                                          | 2.2  | 5         |
| 3  | Reengineering an Antiarrhythmic Drug Using Patient hiPSC Cardiomyocytes to Improve Therapeutic<br>Potential and Reduce Toxicity. Cell Stem Cell, 2020, 27, 813-821.e6.                                          | 11.1 | 33        |
| 4  | Loss-of-Function <i>ABCC8</i> Mutations in Pulmonary Arterial Hypertension. Circulation Genomic and Precision Medicine, 2018, 11, e002087.                                                                      | 3.6  | 62        |
| 5  | Gating mechanisms underlying deactivation slowing by two KCNQ1 atrial fibrillation mutations.<br>Scientific Reports, 2017, 7, 45911.                                                                            | 3.3  | 20        |
| 6  | The Impact of Heterozygous <i>KCNK3</i> Mutations Associated With Pulmonary Arterial Hypertension<br>on Channel Function and Pharmacological Recovery. Journal of the American Heart Association, 2017,<br>6, . | 3.7  | 34        |
| 7  | Cardiac Delayed Rectifier Potassium Channels in Health and Disease. Cardiac Electrophysiology<br>Clinics, 2016, 8, 307-322.                                                                                     | 1.7  | 50        |
| 8  | Coupling Data Mining and Laboratory Experiments to Discover Drug Interactions Causing QT<br>Prolongation. Journal of the American College of Cardiology, 2016, 68, 1756-1764.                                   | 2.8  | 63        |
| 9  | An Integrative Data Science Pipeline to Identify Novel Drug Interactions that Prolong the QT Interval.<br>Drug Safety, 2016, 39, 433-441.                                                                       | 3.2  | 30        |
| 10 | Purkinje Cells as Sources of Arrhythmias in Long QT Syndrome Type 3. Scientific Reports, 2015, 5, 13287.                                                                                                        | 3.3  | 29        |
| 11 | Novel Mechanism of Transient Outward Potassium Channel Current Regulation in the Heart.<br>Circulation Research, 2015, 116, 1633-1635.                                                                          | 4.5  | 2         |
| 12 | KCNE1 divides the voltage sensor movement in KCNQ1/KCNE1 channels into two steps. Nature Communications, 2014, 5, 3750.                                                                                         | 12.8 | 76        |
| 13 | Modeling Tissue- and Mutation- Specific Electrophysiological Effects in the Long QT Syndrome: Role of the Purkinje Fiber. PLoS ONE, 2014, 9, e97720.                                                            | 2.5  | 10        |
| 14 | Unique Cardiac Purkinje Fiber Transient Outward Current Î <sup>2</sup> -Subunit Composition. Circulation Research, 2013, 112, 1310-1322.                                                                        | 4.5  | 77        |
| 15 | Induced pluripotent stem cells used to reveal drug actions in a long QT syndrome family with complex genetics. Journal of General Physiology, 2013, 141, 61-72.                                                 | 1.9  | 189       |
| 16 | K+ Channelopathies (IKs, IKr, and Ito). , 2013, , 233-244.                                                                                                                                                      |      | 0         |
| 17 | Induced pluripotent stem cells used to reveal drug actions in a long QT syndrome family with complex genetics. Journal of Cell Biology, 2013, 200, i3-i3.                                                       | 5.2  | 1         |
| 18 | Characterization of KCNQ1 atrial fibrillation mutations reveals distinct dependence on KCNE1. Journal of General Physiology, 2012, 139, 135-144.                                                                | 1.9  | 34        |

KEVIN J SAMPSON

| #  | Article                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Perturbation of sodium channel structure by an inherited Long QT Syndrome mutation. Nature Communications, 2012, 3, 706.                                                                         | 12.8 | 23        |
| 20 | Ion Channels as Targets for Drugs. , 2012, , 525-534.                                                                                                                                            |      | 0         |
| 21 | Allosteric gating mechanism underlies the flexible gating of KCNQ1 potassium channels. Proceedings of the United States of America, 2012, 109, 7103-7108.                                        | 7.1  | 74        |
| 22 | Biophysical properties of slow potassium channels in human embryonic stem cell derived cardiomyocytes implicate subunit stoichiometry. Journal of Physiology, 2011, 589, 6093-6104.              | 2.9  | 41        |
| 23 | Adrenergic Regulation and Heritable Arrhythmias: Key Roles of the Slowly Activating Heart I Ks<br>Potassium Channel. , 2011, , 451-460.                                                          |      | Ο         |
| 24 | KCNE1 alters the voltage sensor movements necessary to open the KCNQ1 channel gate. Proceedings of the United States of America, 2010, 107, 22710-22715.                                         | 7.1  | 119       |
| 25 | The cardiac I <sub>Ks</sub> channel, complex indeed. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18751-18752.                                    | 7.1  | 32        |
| 26 | Molecular mechanisms of adrenergic stimulation in the heart. Heart Rhythm, 2010, 7, 1151-1153.                                                                                                   | 0.7  | 16        |
| 27 | Location, location, regulation: a novel role for β-spectrin in the heart. Journal of Clinical<br>Investigation, 2010, 120, 3434-3437.                                                            | 8.2  | 2         |
| 28 | Adrenergic regulation of a key cardiac potassium channel can contribute to atrial fibrillation:<br>evidence from an I <sub>Ks</sub> transgenic mouse. Journal of Physiology, 2008, 586, 627-637. | 2.9  | 34        |
| 29 | A Novel LQT-3 Mutation Disrupts an Inactivation Gate Complex with Distinct Rate-Dependent Phenotypic Consequences. Channels, 2007, 1, 273-280.                                                   | 2.8  | 34        |
| 30 | Mutation of an A-kinase-anchoring protein causes long-QT syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20990-20995.                      | 7.1  | 309       |
| 31 | A Novel and Lethal De Novo LQT-3 Mutation in a Newborn with Distinct Molecular Pharmacology and Therapeutic Response. PLoS ONE, 2007, 2, e1258.                                                  | 2.5  | 50        |
| 32 | Molecular basis of ranolazine block of LQT-3 mutant sodium channels: evidence for site of action.<br>British Journal of Pharmacology, 2006, 148, 16-24.                                          | 5.4  | 151       |
| 33 | Altered Na+Channels Promote Pause-Induced Spontaneous Diastolic Activity in Long QT Syndrome Type<br>3 Myocytes. Circulation Research, 2006, 99, 1225-1232.                                      | 4.5  | 63        |
| 34 | Autonomic Control of Cardiac Action Potentials. Circulation Research, 2005, 96, e25-34.                                                                                                          | 4.5  | 139       |