
Francis A Barr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1205657/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polo-like kinases and the orchestration of cell division. Nature Reviews Molecular Cell Biology, 2004, 5, 429-441.	37.0	964
2	Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A–C. Journal of Cell Biology, 2010, 189, 223-232.	5.2	676
3	Cytokinesis: Placing and Making the Final Cut. Cell, 2007, 131, 847-860.	28.9	418
4	GRASP65, a Protein Involved in the Stacking of Golgi Cisternae. Cell, 1997, 91, 253-262.	28.9	386
5	Rab GEFs and GAPs. Current Opinion in Cell Biology, 2010, 22, 461-470.	5.4	376
6	TBC1D14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes. Journal of Cell Biology, 2012, 197, 659-675.	5.2	348
7	Functional dissection of Rab GTPases involved in primary cilium formation. Journal of Cell Biology, 2007, 178, 363-369.	5.2	321
8	Phosphorylation of mitotic kinesin-like protein 2 by polo-like kinase 1 is required for cytokinesis. Journal of Cell Biology, 2003, 162, 863-876.	5.2	293
9	GRASP55, a second mammalian GRASP protein involved in the stacking of Golgi cisternae in a cell-free system. EMBO Journal, 1999, 18, 4949-4960.	7.8	287
10	Relocation of Aurora B from centromeres to the central spindle at the metaphase to anaphase transition requires MKlp2. Journal of Cell Biology, 2004, 166, 167-172.	5.2	276
11	Family-wide characterization of the DENN domain Rab GDP-GTP exchange factors. Journal of Cell Biology, 2010, 191, 367-381.	5.2	260
12	KIF14 and citron kinase act together to promote efficient cytokinesis. Journal of Cell Biology, 2006, 172, 363-372.	5.2	253
13	YSK1 is activated by the Golgi matrix protein GM130 and plays a role in cell migration through its substrate 14-3-3ζ. Journal of Cell Biology, 2004, 164, 1009-1020.	5.2	233
14	Choice of Plk1 docking partners during mitosis and cytokinesis is controlled by the activation state of Cdk1. Nature Cell Biology, 2007, 9, 436-444.	10.3	225
15	BLOC-3 Mutated in Hermansky-Pudlak Syndrome Is a Rab32/38 Guanine Nucleotide Exchange Factor. Current Biology, 2012, 22, 2135-2139.	3.9	223
16	Golgins in the structure and dynamics of the Golgi apparatus. Current Opinion in Cell Biology, 2003, 15, 405-413.	5.4	222
17	Phosphatidylinositol-5-Phosphate Activation and Conserved Substrate Specificity of the Myotubularin Phosphatidylinositol 3-Phosphatases. Current Biology, 2003, 13, 504-509.	3.9	218
18	Mapping the interaction between GRASP65 and GM130, components of a protein complex involved in the stacking of Golgi cisternae. EMBO Journal, 1998, 17, 3258-3268.	7.8	217

#	Article	IF	CITATIONS
19	Caspase-mediated cleavage of the stacking protein GRASP65 is required for Golgi fragmentation during apoptosis. Journal of Cell Biology, 2002, 156, 495-509.	5.2	207
20	A novel Rab6-interacting domain defines a family of Golgi-targeted coiled-coil proteins. Current Biology, 1999, 9, 381-384.	3.9	206
21	Golgins and GTPases, giving identity and structure to the Golgi apparatus. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1744, 383-395.	4.1	205
22	Rab GTPases and membrane identity: Causal or inconsequential?. Journal of Cell Biology, 2013, 202, 191-199.	5.2	203
23	A GRASP55-rab2 effector complex linking Golgi structure to membrane traffic. Journal of Cell Biology, 2001, 155, 877-884.	5.2	202
24	A GTPase-activating protein controls Rab5 function in endocytic trafficking. Nature Cell Biology, 2005, 7, 887-893.	10.3	189
25	The Rab6 GTPase Regulates Recruitment of the Dynactin Complex to Golgi Membranes. Current Biology, 2002, 12, 1792-1795.	3.9	187
26	Use of the Novel Plk1 Inhibitor ZK-Thiazolidinone to Elucidate Functions of Plk1 in Early and Late Stages of Mitosis. Molecular Biology of the Cell, 2007, 18, 4024-4036.	2.1	178
27	Analysis of GTPase-activating proteins: Rab1 and Rab43 are key Rabs required to maintain a functional Golgi complex in human cells. Journal of Cell Science, 2007, 120, 2997-3010.	2.0	178
28	Protein phosphatase 6 regulates mitotic spindle formation by controlling the T-loop phosphorylation state of Aurora A bound to its activator TPX2. Journal of Cell Biology, 2010, 191, 1315-1332.	5.2	171
29	The UIM domain of Hrs couples receptor sorting to vesicle formation. Journal of Cell Science, 2003, 116, 4169-4179.	2.0	164
30	A PP2A-B55 recognition signal controls substrate dephosphorylation kinetics during mitotic exit. Journal of Cell Biology, 2016, 214, 539-554.	5.2	164
31	Loss-of-Function Mutations in RAB18 Cause Warburg Micro Syndrome. American Journal of Human Genetics, 2011, 88, 499-507.	6.2	158
32	Rab14 and Its Exchange Factor FAM116 Link Endocytic Recycling and Adherens Junction Stability in Migrating Cells. Developmental Cell, 2012, 22, 952-966.	7.0	158
33	Arfophilins Are Dual Arf/Rab 11 Binding Proteins That Regulate Recycling Endosome Distribution and Are Related toDrosophilaNuclear Fallout. Molecular Biology of the Cell, 2003, 14, 2908-2920.	2.1	138
34	Gerodermia osteodysplastica is caused by mutations in SCYL1BP1, a Rab-6 interacting golgin. Nature Genetics, 2008, 40, 1410-1412.	21.4	138
35	Plk1 docking to GRASP65 phosphorylated by Cdk1 suggests a mechanism for Golgi checkpoint signalling. EMBO Journal, 2005, 24, 753-765.	7.8	137
36	The yeast orthologue of GRASP65 forms a complex with a coiled-coil protein that contributes to ER to Golgi traffic. Journal of Cell Biology, 2007, 176, 255-261.	5.2	136

#	Article	IF	CITATIONS
37	The BEG (PP2A-B55/ENSA/Greatwall) Pathway Ensures Cytokinesis follows Chromosome Separation. Molecular Cell, 2013, 52, 393-405.	9.7	136
38	Plk1 negatively regulates Cep55 recruitment to the midbody to ensure orderly abscission. Journal of Cell Biology, 2010, 191, 751-760.	5.2	134
39	Specific Rab GTPase-activating proteins define the Shiga toxin and epidermal growth factor uptake pathways. Journal of Cell Biology, 2007, 177, 1133-1143.	5.2	130
40	Loss-of-Function Mutations in TBC1D20 Cause Cataracts and Male Infertility in blind sterile Mice and Warburg Micro Syndrome in Humans. American Journal of Human Genetics, 2013, 93, 1001-1014.	6.2	119
41	Aurora B suppresses microtubule dynamics and limits central spindle size by locally activating KIF4A. Journal of Cell Biology, 2013, 202, 605-621.	5.2	117
42	Rab18 and a Rab18 GEF complex are required for normal ER structure. Journal of Cell Biology, 2014, 205, 707-720.	5.2	117
43	Cooperation between Mitotic Kinesins Controls the Late Stages of Cytokinesis. Current Biology, 2006, 16, 301-307.	3.9	113
44	The astrin–kinastrin/SKAP complex localizes to microtubule plus ends and facilitates chromosome alignment. Journal of Cell Biology, 2011, 192, 959-968.	5.2	112
45	CYK4 inhibits Rac1-dependent PAK1 and ARHGEF7 effector pathways during cytokinesis. Journal of Cell Biology, 2012, 198, 865-880.	5.2	111
46	Structural basis for pH-dependent retrieval of ER proteins from the Golgi by the KDEL receptor. Science, 2019, 363, 1103-1107.	12.6	110
47	Inheritance and biogenesis of organelles in the secretory pathway. Nature Reviews Molecular Cell Biology, 2007, 8, 429-439.	37.0	106
48	Golgi matrix proteins interact with p24 cargo receptors and aid their efficient retention in the Golgi apparatus. Journal of Cell Biology, 2001, 155, 885-892.	5.2	105
49	Trimeric G-proteins of thetrans-Golgi network are involved in the formation of constitutive secretory vesicles and immature secretory granules. FEBS Letters, 1991, 294, 239-243.	2.8	100
50	Crystal structure of folliculin reveals a hidDENN function in genetically inherited renal cancer. Open Biology, 2012, 2, 120071.	3.6	97
51	Insights regarding guanine nucleotide exchange from the structure of a DENN-domain protein complexed with its Rab GTPase substrate. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18672-18677.	7.1	96
52	Trimeric G proteins and vesicle formation. Trends in Cell Biology, 1992, 2, 91-94.	7.9	95
53	Multiple Rab GTPase Binding Sites in GCC185 Suggest a Model for Vesicle Tethering at the <i>Trans</i> -Golgi. Molecular Biology of the Cell, 2009, 20, 209-217.	2.1	86
54	Discovery of new Longin and Roadblock domains that form platforms for small GTPases in Ragulator and TRAPP-II. Small GTPases, 2013, 4, 62-69.	1.6	85

#	Article	IF	CITATIONS
55	Phosphorylation of Nlp by Plk1 negatively regulates its dynein-dynactin-dependent targeting to the centrosome. Journal of Cell Science, 2005, 118, 5101-5108.	2.0	84
56	The Mon1-Ccz1 GEF activates the Rab7 GTPase Ypt7 via a longin fold-Rab interface and association with PI-3-P-positive membranes. Journal of Cell Science, 2014, 127, 1043-51.	2.0	84
57	Protein phosphatases and the regulation of mitosis. Journal of Cell Science, 2011, 124, 2323-2334.	2.0	79
58	Dynein light chain 1 and a spindle-associated adaptor promote dynein asymmetry and spindle orientation. Journal of Cell Biology, 2012, 198, 1039-1054.	5.2	76
59	Melanoma-associated mutations in protein phosphatase 6 cause chromosome instability and DNA damage due to dysregulated Aurora-A. Journal of Cell Science, 2013, 126, 3429-40.	2.0	76
60	Convergence of Cell Cycle Regulation and Growth Factor Signals on GRASP65. Journal of Biological Chemistry, 2005, 280, 23048-23056.	3.4	74
61	Mitogen-inducible gene 6 is an endogenous inhibitor of HGF/Met-induced cell migration and neurite growth. Journal of Cell Biology, 2005, 171, 337-348.	5.2	74
62	Rab regulation by GEFs and GAPs during membrane traffic. Current Opinion in Cell Biology, 2019, 59, 34-39.	5.4	74
63	Analysis of Rab GTPase-Activating Proteins Indicates that Rab1a/b and Rab43 Are Important for Herpes Simplex Virus 1 Secondary Envelopment. Journal of Virology, 2011, 85, 8012-8021.	3.4	70
64	KIF4A and PP2A–B56 form a spatially restricted feedback loop opposing Aurora B at the anaphase central spindle. Journal of Cell Biology, 2014, 207, 683-693.	5.2	70
65	MAD1-dependent recruitment of CDK1-CCNB1 to kinetochores promotes spindle checkpoint signaling. Journal of Cell Biology, 2019, 218, 1108-1117.	5.2	67
66	Getting out of mitosis: spatial and temporal control of mitotic exit and cytokinesis by <scp>PP</scp> 1 and <scp>PP</scp> 2A. FEBS Letters, 2019, 593, 2908-2924.	2.8	64
67	Diversity and plasticity in Rab GTPase nucleotide release mechanism has consequences for Rab activation and inactivation. ELife, 2014, 3, e01623.	6.0	63
68	RUTBC1 Protein, a Rab9A Effector That Activates GTP Hydrolysis by Rab32 and Rab33B Proteins. Journal of Biological Chemistry, 2011, 286, 33213-33222.	3.4	59
69	ICA69 is a novel Rab2 effector regulating ER–Golgi trafficking in insulinoma cells. European Journal of Cell Biology, 2008, 87, 197-209.	3.6	48
70	The Msb3/Gyp3 GAP controls the activity of the Rab GTPases Vps21 and Ypt7 at endosomes and vacuoles. Molecular Biology of the Cell, 2012, 23, 2516-2526.	2.1	48
71	Golgi positioning. Journal of Cell Biology, 2005, 168, 993-998.	5.2	46
72	Dynamics of Golgi Matrix Proteins after the Blockage of ER to Golgi Transport. Journal of Biochemistry, 2004, 135, 201-216.	1.7	45

#	Article	IF	CITATIONS
73	CDK1-CCNB1 creates a spindle checkpoint–permissive state by enabling MPS1 kinetochore localization. Journal of Cell Biology, 2019, 218, 1182-1199.	5.2	45
74	Biophysical Analysis of the Interaction of Rab6a GTPase with Its Effector Domains. Journal of Biological Chemistry, 2009, 284, 2628-2635.	3.4	44
75	TD-60 links RalA GTPase function to the CPC in mitosis. Nature Communications, 2015, 6, 7678.	12.8	43
76	Homozygous Mutations in TBC1D23 Lead to a Non-degenerative Form of Pontocerebellar Hypoplasia. American Journal of Human Genetics, 2017, 101, 441-450.	6.2	43
77	Direct targeting of cis-Golgi matrix proteins to the Golgi apparatus. Journal of Cell Science, 2001, 114, 4105-4115.	2.0	40
78	A role for ADP-ribosylation factor 1, but not COP I, in secretory vesicle biogenesis from the trans-Golgi network. FEBS Letters, 1996, 384, 65-70.	2.8	36
79	Checkpoint signaling and error correction require regulation of the MPS1 T-loop by PP2A-B56. Journal of Cell Biology, 2019, 218, 3188-3199.	5.2	36
80	Rab35 protein regulates evoked exocytosis of endothelial Weibel–Palade bodies. Journal of Biological Chemistry, 2017, 292, 11631-11640.	3.4	35
81	Rab GTPase function in Golgi trafficking. Seminars in Cell and Developmental Biology, 2009, 20, 780-783.	5.0	33
82	Planar Cell Polarity Effector Proteins Inturned and Fuzzy Form a Rab23 GEF Complex. Current Biology, 2019, 29, 3323-3330.e8.	3.9	33
83	Membrane traffic: Do cones mark sites of fission?. Current Biology, 2000, 10, R141-R144.	3.9	32
84	Molecular basis for KDEL-mediated retrieval of escaped ER-resident proteins – SWEET talking the COPs. Journal of Cell Science, 2020, 133, .	2.0	32
85	Golgi inheritance. Journal of Cell Biology, 2004, 164, 955-958.	5.2	30
86	Formation of secretory vesicles in the biosynthetic pathway. Biochimica Et Biophysica Acta - Molecular Cell Research, 1997, 1358, 6-22.	4.1	29
87	Inheritance of the endoplasmic reticulum and Golgi apparatus. Current Opinion in Cell Biology, 2002, 14, 496-499.	5.4	29
88	RUTBC2 Protein, a Rab9A Effector and GTPase-activating Protein for Rab36. Journal of Biological Chemistry, 2012, 287, 22740-22748.	3.4	28
89	GORAB Missense Mutations Disrupt RAB6 and ARF5 Binding and Golgi Targeting. Journal of Investigative Dermatology, 2015, 135, 2368-2376.	0.7	28
90	Molecular basis of MKLP2-dependent Aurora B transport from chromatin to the anaphase central spindle. Journal of Cell Biology, 2020, 219, .	5.2	25

#	Article	IF	CITATIONS
91	Ordered dephosphorylation initiated by the selective proteolysis of cyclin B drives mitotic exit. ELife, 2020, 9, .	6.0	22
92	The Golgi apparatus: going round in circles?. Trends in Cell Biology, 2002, 12, 101-104.	7.9	21
93	PP1 promotes cyclin B destruction and the metaphase–anaphase transition by dephosphorylating CDC20. Molecular Biology of the Cell, 2020, 31, 2315-2330.	2.1	20
94	Assay and Functional Properties of Rabkinesinâ€6/Rab6â€KIFL/MKlp2 in Cytokinesis. Methods in Enzymology, 2005, 403, 618-628.	1.0	19
95	Compound heterozygous loss-of-function mutations in KIF20A are associated with a novel lethal congenital cardiomyopathy in two siblings. PLoS Genetics, 2018, 14, e1007138.	3.5	18
96	The Golgi apparatus. Current Biology, 2000, 10, R583-R585.	3.9	16
97	Aurora A promotes chromosome congression by activating the condensin-dependent pool of KIF4A. Journal of Cell Biology, 2019, 219, .	5.2	16
98	Membrane Fusion: Caught in a Trap. Current Biology, 2004, 14, R187-R189.	3.9	14
99	Assay and Properties of Rab6 Interaction with Dynein–Dynactin Complexes. Methods in Enzymology, 2005, 403, 607-618.	1.0	14
100	Membrane Traffic: Exocyst III – Makes a Family. Current Biology, 2002, 12, R18-R20.	3.9	13
101	A signal capture and proofreading mechanism for the KDEL-receptor explains selectivity and dynamic range in ER retrieval. ELife, 2021, 10, .	6.0	13
102	l-proteins – a proposed switch in myotubularin function. Trends in Biochemical Sciences, 2004, 29, 58-61.	7.5	10
103	Cell organelles. Current Opinion in Cell Biology, 2013, 25, 403-405.	5.4	10
104	Purification and Functional Interactions of GRASP55 with Rab2. Methods in Enzymology, 2005, 403, 391-401.	1.0	8
105	Analysis of Rab GTPase and GTPaseâ€Activating Protein Function at Primary Cilia. Methods in Enzymology, 2008, 439, 353-364.	1.0	8
106	COP Sets TRAPP for Vesicles. Developmental Cell, 2007, 12, 326-327.	7.0	7
107	Analysis of Rab GTPases. Current Protocols in Cell Biology, 2012, 57, Unit 15.18.	2.3	6

108 The Kinesin-6 Members MKLP1, MKLP2 and MPP1., 2015, , 193-222.

6

#	Article	IF	CITATIONS
109	Membrane Traffic: Golgi Stumbles over Cilia. Current Biology, 2009, 19, R253-R255.	3.9	5
110	Cilia $\hat{a} \in$ "the masterplan. Journal of Cell Science, 2008, 121, 5-6.	2.0	4
111	Organelle inheritance—what players have skin in the game?. Science, 2017, 355, 459-460.	12.6	2
112	Membrane Traffic: Trans-Golgi Tethers Leave aÂSurprisingly Small GAP. Current Biology, 2017, 27, R1222-R1225.	3.9	2
113	Joining tethers and SNAREs. Trends in Biochemical Sciences, 2000, 25, 486.	7.5	1
114	Rab GEFs and GAPs: The Enigma Variations. , 2014, , 81-106.		1
115	The Golgi apparatus: an update. Trends in Cell Biology, 2002, 12, 161.	7.9	0