
Tianyu Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12054720/publications.pdf Version: 2024-02-01

Τιληνιι Ημ

#	Article	lF	CITATIONS
1	From canopy complementarity to asymmetric competition: The negative relationship between structural diversity and productivity during succession. Journal of Ecology, 2022, 110, 457-465.	4.0	10
2	Analysis of UAV lidar information loss and its influence on the estimation accuracy of structural and functional traits in a meadow steppe. Ecological Indicators, 2022, 135, 108515.	6.3	23
3	Neural network guided interpolation for mapping canopy height of China's forests by integrating GEDI and ICESat-2 data. Remote Sensing of Environment, 2022, 269, 112844.	11.0	68
4	The Shift from Energy to Water Limitation in Local Canopy Height from Temperate to Tropical Forests in China. Forests, 2022, 13, 639.	2.1	1
5	Humanâ€Climate Coupled Changes in Vegetation Community Complexity of China Since 1980s. Earth's Future, 2022, 10, .	6.3	4
6	Soil carbon persistence governed by plant input and mineral protection at regional and global scales. Ecology Letters, 2021, 24, 1018-1028.	6.4	96
7	Lidar Boosts 3D Ecological Observations and Modelings: A Review and Perspective. IEEE Geoscience and Remote Sensing Magazine, 2021, 9, 232-257.	9.6	62
8	UAV-lidar aids automatic intelligent powerline inspection. International Journal of Electrical Power and Energy Systems, 2021, 130, 106987.	5.5	67
9	Development and Performance Evaluation of a Very Low-Cost UAV-Lidar System for Forestry Applications. Remote Sensing, 2021, 13, 77.	4.0	86
10	Estimation of degraded grassland aboveground biomass using machine learning methods from terrestrial laser scanning data. Ecological Indicators, 2020, 108, 105747.	6.3	52
11	Separating the Structural Components of Maize for Field Phenotyping Using Terrestrial LiDAR Data and Deep Convolutional Neural Networks. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 2644-2658.	6.3	55
12	A Novel Framework to Automatically Fuse Multiplatform LiDAR Data in Forest Environments Based on Tree Locations. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 2165-2177.	6.3	26
13	A Point-Based Fully Convolutional Neural Network for Airborne LiDAR Ground Point Filtering in Forested Environments. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 3958-3974.	4.9	33
14	Drought-modulated allometric patterns of trees in semi-arid forests. Communications Biology, 2020, 3, 405.	4.4	19
15	Mapping the Global Mangrove Forest Aboveground Biomass Using Multisource Remote Sensing Data. Remote Sensing, 2020, 12, 1690.	4.0	48
16	Large‣cale Geographical Variations and Climatic Controls on Crown Architecture Traits. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005306.	3.0	13
17	Retrieval of tree branch architecture attributes from terrestrial laser scan data using a Laplacian algorithm. Agricultural and Forest Meteorology, 2020, 284, 107874.	4.8	29
18	An updated Vegetation Map of China (1:1000000). Science Bulletin, 2020, 65, 1125-1136.	9.0	64

Τιανγύ Ηυ

#	Article	IF	CITATIONS
19	Non-destructive estimation of field maize biomass using terrestrial lidar: an evaluation from plot level to individual leaf level. Plant Methods, 2020, 16, 69.	4.3	33
20	A simple and integrated approach for fire severity assessment using bi-temporal airborne LiDAR data. International Journal of Applied Earth Observation and Geoinformation, 2019, 78, 25-38.	2.8	21
21	An Object-Based Strategy for Improving the Accuracy of Spatiotemporal Satellite Imagery Fusion for Vegetation-Mapping Applications. Remote Sensing, 2019, 11, 2927.	4.0	9
22	The Influence of Vegetation Characteristics on Individual Tree Segmentation Methods with Airborne LiDAR Data. Remote Sensing, 2019, 11, 2880.	4.0	35
23	Stem–Leaf Segmentation and Phenotypic Trait Extraction of Individual Maize Using Terrestrial LiDAR Data. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 1336-1346.	6.3	92
24	A global corrected SRTM DEM product for vegetated areas. Remote Sensing Letters, 2018, 9, 393-402.	1.4	36
25	A Comparison of LiDAR Filtering Algorithms in Vegetated Mountain Areas. Canadian Journal of Remote Sensing, 2018, 44, 287-298.	2.4	21
26	The Transferability of Random Forest in Canopy Height Estimation from Multi-Source Remote Sensing Data. Remote Sensing, 2018, 10, 1183.	4.0	29
27	Retrieving 2-D Leaf Angle Distributions for Deciduous Trees From Terrestrial Laser Scanner Data. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 4945-4955.	6.3	19
28	Deep Learning: Individual Maize Segmentation From Terrestrial Lidar Data Using Faster R-CNN and Regional Growth Algorithms. Frontiers in Plant Science, 2018, 9, 866.	3.6	104
29	An integrated UAV-borne lidar system for 3D habitat mapping in three forest ecosystems across China. International Journal of Remote Sensing, 2017, 38, 2954-2972.	2.9	106
30	Global patterns of woody residence time and its influence on model simulation of aboveground biomass. Global Biogeochemical Cycles, 2017, 31, 821-835.	4.9	18
31	Evaluation of modeled global vegetation carbon dynamics: Analysis based on global carbon flux and above-ground biomass data. Ecological Modelling, 2017, 355, 84-96.	2.5	17
32	Mapping Global Forest Aboveground Biomass with Spaceborne LiDAR, Optical Imagery, and Forest Inventory Data. Remote Sensing, 2016, 8, 565.	4.0	108
33	The influence of meteorology and phenology on net ecosystem exchange in an eastern Siberian boreal larch forest. Journal of Plant Ecology, 2016, 9, 520-530.	2.3	7
34	Forest fuel treatment detection using multi-temporal airborne lidar data and high-resolution aerial imagery: a case study in the Sierra Nevada Mountains, California. International Journal of Remote Sensing, 2016, 37, 3322-3345.	2.9	19
35	Spatial distribution of forest aboveground biomass in China: Estimation through combination of spaceborne lidar, optical imagery, and forest inventory data. Remote Sensing of Environment, 2016, 173, 187-199.	11.0	166