
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1205408/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Role of UGT1A1*28 Polymorphism in the Pharmacodynamics and Pharmacokinetics of Irinotecan in Patients With Metastatic Colorectal Cancer. Journal of Clinical Oncology, 2006, 24, 3061-3068.	1.6	328
2	Implementing Pharmacogenomics in Europe: Design and Implementation Strategy of the Ubiquitous Pharmacogenomics Consortium. Clinical Pharmacology and Therapeutics, 2017, 101, 341-358.	4.7	240
3	Predictive Role of the <i>UGT1A1</i> , <i>UGT1A7</i> , and <i>UGT1A9</i> Genetic Variants and Their Haplotypes on the Outcome of Metastatic Colorectal Cancer Patients Treated With Fluorouracil, Leucovorin, and Irinotecan. Journal of Clinical Oncology, 2009, 27, 2457-2465.	1.6	216
4	Genotype-Driven Phase I Study of Irinotecan Administered in Combination With Fluorouracil/Leucovorin in Patients With Metastatic Colorectal Cancer. Journal of Clinical Oncology, 2010, 28, 866-871.	1.6	156
5	Development and validation of a microRNA-based signature (MiROvaR) to predict early relapse or progression of epithelial ovarian cancer: a cohort study. Lancet Oncology, The, 2016, 17, 1137-1146.	10.7	97
6	Pharmacogenomics of intrinsic and acquired pharmacoresistance in colorectal cancer: Toward targeted personalized therapy. Drug Resistance Updates, 2015, 20, 39-70.	14.4	83
7	Clinical validity of a <scp><i>DPYD</i></scp> â€based pharmacogenetic test to predict severe toxicity to fluoropyrimidines. International Journal of Cancer, 2015, 137, 2971-2980.	5.1	70
8	Pharmacogenetics of the systemic treatment in advanced hepatocellular carcinoma. World Journal of Gastroenterology, 2019, 25, 3870-3896.	3.3	70
9	A prospective validation pharmacogenomic study in the adjuvant setting of colorectal cancer patients treated with the 5-fluorouracil/leucovorin/oxaliplatin (FOLFOX4) regimen. Pharmacogenomics Journal, 2013, 13, 403-409.	2.0	66
10	Tumor response is predicted by patient genetic profile in rectal cancer patients treated with neo-adjuvant chemo-radiotherapy. Pharmacogenomics Journal, 2011, 11, 214-226.	2.0	63
11	Effect of <i>TP53 Arg72Pro</i> and <i>MDM2 SNP309</i> Polymorphisms on the Risk of High-Grade Osteosarcoma Development and Survival. Clinical Cancer Research, 2009, 15, 3550-3556.	7.0	62
12	Refining the <i>UGT1A</i> Haplotype Associated with Irinotecan-Induced Hematological Toxicity in Metastatic Colorectal Cancer Patients Treated with 5-Fluorouracil/Irinotecan-Based Regimens. Journal of Pharmacology and Experimental Therapeutics, 2013, 345, 95-101.	2.5	58
13	Sex Disparities in Efficacy in COVID-19 Vaccines: A Systematic Review and Meta-Analysis. Vaccines, 2021, 9, 825.	4.4	57
14	New insights into the pharmacological, immunological, and CAR-T-cell approaches in the treatment of hepatocellular carcinoma. Drug Resistance Updates, 2020, 51, 100702.	14.4	53
15	Ubiquitous Pharmacogenomics (U-PGx): The Time for Implementation is Now. An Horizon2020 Program to Drive Pharmacogenomics into Clinical Practice. Current Pharmaceutical Biotechnology, 2017, 18, 204-209.	1.6	51
16	Pharmacogenetics of ABC and SLC transporters in metastatic colorectal cancer patients receiving first-line FOLFIRI treatment. Pharmacogenetics and Genomics, 2013, 23, 549-557.	1.5	49
17	Estimating the Effectiveness of DPYD Genotyping in Italian Individuals Suffering from Cancer Based on the Cost of Chemotherapy-Induced Toxicity. American Journal of Human Genetics, 2019, 104, 1158-1168.	6.2	43
18	Genetic Diversity of the KIR/HLA System and Outcome of Patients with Metastatic Colorectal Cancer Treated with Chemotherapy. PLoS ONE, 2014, 9, e84940.	2.5	40

#	Article	IF	CITATIONS
19	The Genotype for <i><scp>DPYD</scp></i> Risk Variants in Patients With Colorectal Cancer and the Related Toxicity Management Costs in Clinical Practice. Clinical Pharmacology and Therapeutics, 2019, 105, 994-1002.	4.7	39
20	ABCC5 and ABCG1 polymorphisms predict irinotecan-induced severe toxicity in metastatic colorectal cancer patients. Pharmacogenetics and Genomics, 2015, 25, 573-583.	1.5	37
21	Pharmacogenomics and Personalized Medicine. Genes, 2020, 11, 679.	2.4	37
22	Pharmacogenetics of Irinotecan. Anti-Cancer Agents in Medicinal Chemistry, 2003, 3, 225-237.	7.0	36
23	Carboxylesterase Isoform 2 mRNA Expression in Peripheral Blood Mononuclear Cells Is a Predictive Marker of the Irinotecan to SN38 Activation Step in Colorectal Cancer Patients. Clinical Cancer Research, 2005, 11, 6901-6907.	7.0	34
24	CDK4/6 Inhibitors in Breast Cancer Treatment: Potential Interactions with Drug, Gene, and Pathophysiological Conditions. International Journal of Molecular Sciences, 2020, 21, 6350.	4.1	34
25	MTHFR polymorphisms in gastric cancer and in first-degree relatives of patients with gastric cancer. Tumor Biology, 2010, 31, 23-32.	1.8	32
26	Pregnane X receptor, constitutive androstane receptor and hepatocyte nuclear factors as emerging players in cancer precision medicine. Pharmacogenomics, 2016, 17, 1547-1571.	1.3	31
27	Cost Evaluation of Irinotecanâ€Related Toxicities Associated With the <i>UGT1A1*28</i> Patient Genotype. Clinical Pharmacology and Therapeutics, 2017, 102, 123-130.	4.7	31
28	HLA-G 3'UTR Polymorphisms Impact the Prognosis of Stage II-III CRC Patients in Fluoropyrimidine-Based Treatment. PLoS ONE, 2015, 10, e0144000.	2.5	31
29	Nuclear receptors and drug metabolism for the personalization of cancer therapy. Expert Opinion on Drug Metabolism and Toxicology, 2016, 12, 291-306.	3.3	29
30	Thymidylate synthetase mRNA levels are increased in liver metastases of colorectal cancer patients resistant to fluoropyrimidine-based chemotherapy. BMC Cancer, 2004, 4, 11.	2.6	28
31	Host genetic profiling to increase drug safety in colorectal cancer from discovery to implementation. Drug Resistance Updates, 2018, 39, 18-40.	14.4	28
32	Pharmacogenetics of the nuclear hormone receptors: the missing link between environment and drug effects?. Pharmacogenomics, 2013, 14, 2035-2054.	1.3	27
33	SNCA 3′UTR genetic variants in patients with Parkinson's disease and REM sleep behavior disorder. Neurological Sciences, 2017, 38, 1233-1240.	1.9	27
34	Generating evidence for precision medicine: considerations made by the Ubiquitous Pharmacogenomics Consortium when designing and operationalizing the PREPARE study. Pharmacogenetics and Genomics, 2020, 30, 131-144.	1.5	26
35	Predictive response biomarkers in rectal cancer neoadjuvant treatment. Frontiers in Bioscience - Scholar, 2014, S6, 110-119.	2.1	26
36	Genetic biomarkers for hepatocellular cancer risk in a caucasian population. World Journal of Gastroenterology, 2017, 23, 6674-6684.	3.3	26

#	Article	IF	CITATIONS
37	New Challenges in Tumor Mutation Heterogeneity in Advanced Ovarian Cancer by a Targeted Next-Generation Sequencing (NGS) Approach. Cells, 2019, 8, 584.	4.1	25
38	miRNA pharmacogenomics: the new frontier for personalized medicine in cancer?. Pharmacogenomics, 2012, 13, 1635-1650.	1.3	24
39	Association of STAT-3 rs1053004 and VDR rs11574077 With FOLFIRI-Related Gastrointestinal Toxicity in Metastatic Colorectal Cancer Patients. Frontiers in Pharmacology, 2018, 9, 367.	3.5	24
40	Pharmacogenomics of Targeted Agents for Personalization of Colorectal Cancer Treatment. International Journal of Molecular Sciences, 2017, 18, 1522.	4.1	23
41	Circulating-Free DNA Analysis in Hepatocellular Carcinoma: A Promising Strategy to Improve Patients' Management and Therapy Outcomes. International Journal of Molecular Sciences, 2019, 20, 5498.	4.1	23
42	Germline variability and tumor expression level of ribosomal protein gene RPL28 are associated with survival of metastatic colorectal cancer patients. Scientific Reports, 2019, 9, 13008.	3.3	23
43	Improved Progression-Free Survival in Irinotecan-Treated Metastatic Colorectal Cancer Patients Carrying the HNF1A Coding Variant p.127L. Frontiers in Pharmacology, 2017, 8, 712.	3.5	22
44	A Pharmacogenetic Survey of Androgen Receptor (CAG)N and (GGN)N Polymorphisms in Patients Experiencing Long Term Side Effects after Finasteride Discontinuation. International Journal of Biological Markers, 2014, 29, 310-316.	1.8	21
45	Cisplatin resistance can be curtailed by blunting Bnip3-mediated mitochondrial autophagy. Cell Death and Disease, 2022, 13, 398.	6.3	20
46	Pharmacogenomics decision support in the U-PGx project: Results and advice from clinical implementation across seven European countries. PLoS ONE, 2022, 17, e0268534.	2.5	20
47	A novel UGT1 marker associated with better tolerance against irinotecan-induced severe neutropenia in metastatic colorectal cancer patients. Pharmacogenomics Journal, 2015, 15, 513-520.	2.0	19
48	UGT1A1*28 polymorphism in ovarian cancer patients. Oncology Reports, 2004, 12, 457-62.	2.6	19
49	MTHFR-1298 A>C (rs1801131) is a predictor of survival in two cohorts of stage II/III colorectal cancer patients treated with adjuvant fluoropyrimidine chemotherapy with or without oxaliplatin. Pharmacogenomics Journal, 2015, 15, 219-225.	2.0	18
50	Association of the <i><scp>HLA</scp>â€G</i> 3′ <scp>UTR</scp> polymorphisms with colorectal cancer in Italy: a first insight. International Journal of Immunogenetics, 2016, 43, 32-39.	1.8	18
51	UGT1A polymorphisms as genetic biomarkers for hepatocellular carcinoma risk in Caucasian population. Liver International, 2017, 37, 1345-1353.	3.9	18
52	Androgen Receptor (<i>AR</i>) Gene (CAG)n and (GGN)n Length Polymorphisms and Symptoms in Young Males With Long-Lasting Adverse Effects After Finasteride Use Against Androgenic Alopecia. Sexual Medicine, 2017, 5, e61-e71.	1.6	18
53	Methylenetetrahydrofolate reductase genotype in diffuse large B-cell lymphomas with and without hypermethylation of the DNA repair gene O6-methylguanine DNA methyltransferase. International Journal of Biological Markers, 2003, 18, 218-221.	1.8	18
54	BNC2 is a putative tumor suppressor gene in high-grade serous ovarian carcinoma and impacts cell survival after oxidative stress. Cell Death and Disease, 2016, 7, e2374-e2374.	6.3	16

#	Article	IF	CITATIONS
55	Pharmacogenetics and stomach cancer: an update. Pharmacogenomics, 2007, 8, 497-505.	1.3	15
56	Decision criteria for rational selection of homogeneous genotyping platforms for pharmacogenomics testing in clinical diagnostics. Clinical Chemistry and Laboratory Medicine, 2010, 48, 447-59.	2.3	15
57	Standard fluoropyrimidine dosages in chemoradiation therapy result in an increased risk of severe toxicity in DPYD variant allele carriers. European Journal of Cancer, 2018, 104, 210-218.	2.8	14
58	Educating the Next Generation of Pharmacogenomics Experts: Global Educational Needs and Concepts. Clinical Pharmacology and Therapeutics, 2019, 106, 313-316.	4.7	14
59	Germline Polymorphisms in the Nuclear Receptors PXR and VDR as Novel Prognostic Markers in Metastatic Colorectal Cancer Patients Treated With FOLFIRI. Frontiers in Oncology, 2019, 9, 1312.	2.8	14
60	Predictive role of microRNA-related genetic polymorphisms in the pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer patients. Oncotarget, 2016, 7, 19781-19793.	1.8	14
61	HLA-G 3′UTR Polymorphisms Predict Drug-Induced G3-4 Toxicity Related to Folinic Acid/5-Fluorouracil/Oxaliplatin (FOLFOX4) Chemotherapy in Non-Metastatic Colorectal Cancer. International Journal of Molecular Sciences, 2017, 18, 1366.	4.1	13
62	Azathioprine Biotransformation in Young Patients with Inflammatory Bowel Disease: Contribution of Glutathione-S Transferase M1 and A1 Variants. Genes, 2019, 10, 277.	2.4	13
63	Pharmacogenetics Biomarkers and Their Specific Role in Neoadjuvant Chemoradiotherapy Treatments: An Exploratory Study on Rectal Cancer Patients. International Journal of Molecular Sciences, 2016, 17, 1482.	4.1	12
64	Genetic Variants of the TERT Gene, Telomere Length, and Circulating TERT as Prognostic Markers in Rectal Cancer Patients. Cancers, 2020, 12, 3115.	3.7	12
65	Genetic Markers of the Host to Predict the Efficacy of Colorectal Cancer Targeted Therapy. Current Medicinal Chemistry, 2020, 27, 4249-4273.	2.4	11
66	ldentification of Novel Somatic TP53 Mutations in Patients with High-Grade Serous Ovarian Cancer (HGSOC) Using Next-Generation Sequencing (NGS). International Journal of Molecular Sciences, 2018, 19, 1510.	4.1	10
67	Clonal Evolution of TP53 c.375+1G>A Mutation in Pre- and Post- Neo-Adjuvant Chemotherapy (NACT) Tumor Samples in High-Grade Serous Ovarian Cancer (HGSOC). Cells, 2019, 8, 1186.	4.1	10
68	Clonal Selection of a Novel Deleterious TP53 Somatic Mutation Discovered in ctDNA of a KIT/PDGFRA Wild-Type Gastrointestinal Stromal Tumor Resistant to Imatinib. Frontiers in Pharmacology, 2020, 11, 36.	3.5	10
69	Germline and Somatic Pharmacogenomics to Refine Rectal Cancer Patients Selection for Neo-Adjuvant Chemoradiotherapy. Frontiers in Pharmacology, 2020, 11, 897.	3.5	10
70	IL15RA and SMAD3 Genetic Variants Predict Overall Survival in Metastatic Colorectal Cancer Patients Treated with FOLFIRI Therapy: A New Paradigm. Cancers, 2021, 13, 1705.	3.7	10
71	FARMAPRICE: A Pharmacogenetic Clinical Decision Support System for Precise and Cost-Effective Therapy. Genes, 2019, 10, 276.	2.4	9
72	A New Genetic Risk Score to Predict the Outcome of Locally Advanced or Metastatic Breast Cancer Patients Treated With First-Line Exemestane: Results From a Prospective Study. Clinical Breast Cancer, 2019, 19, 137-145.e4.	2.4	9

#	Article	IF	CITATIONS
73	Impact of DNA repair gene polymorphisms on the risk of biochemical recurrence after radiotherapy and overall survival in prostate cancer. Oncotarget, 2017, 8, 22863-22875.	1.8	9
74	UGT1A1*28 polymorphism in ovarian cancer patients. Oncology Reports, 0, , .	2.6	9
75	A Clinical-Genetic Score to Identify Surgically Resected Colorectal Cancer Patients Benefiting From an Adjuvant Fluoropyrimidine-Based Therapy. Frontiers in Pharmacology, 2018, 9, 1101.	3.5	8
76	Focal Recurrent Copy Number Alterations Characterize Disease Relapse in High Grade Serous Ovarian Cancer Patients with Good Clinical Prognosis: A Pilot Study. Genes, 2019, 10, 678.	2.4	8
77	miR-331-3p is involved in glucocorticoid resistance reversion by rapamycin through suppression of the MAPK signaling pathway. Cancer Chemotherapy and Pharmacology, 2020, 86, 361-374.	2.3	7
78	Pharmacogenomics and stomach cancer. Pharmacogenomics, 2004, 5, 627-641.	1.3	6
79	Combination of germline variations associated with survival of folinic acid, fluorouracil and irinotecan-treated metastatic colorectal cancer patients. Pharmacogenomics, 2019, 20, 1179-1187.	1.3	6
80	rs4143815-PDL1, a New Potential Immunogenetic Biomarker of Biochemical Recurrence in Locally Advanced Prostate Cancer after Radiotherapy. International Journal of Molecular Sciences, 2019, 20, 2082.	4.1	6
81	Immunogenetic markers in IL17F predict the risk of metastases spread and overall survival in rectal cancer patients treated with neoadjuvant chemoradiotherapy. Radiotherapy and Oncology, 2020, 149, 30-37.	0.6	6
82	Clinical implications of genetic polymorphisms on stomach cancer drug therapy. Pharmacogenomics Journal, 2007, 7, 76-80.	2.0	5
83	A TGF-β associated genetic score to define prognosis and platinum sensitivity in advanced epithelial ovarian cancer. Gynecologic Oncology, 2020, 156, 233-242.	1.4	5
84	Optimal Sampling Strategies for Irinotecan (CPT-11) and its Active Metabolite (SN-38) in Cancer Patients. AAPS Journal, 2020, 22, 59.	4.4	4
85	SMAD3 Host and Tumor Profiling to Identify Locally Advanced Rectal Cancer Patients at High Risk of Poor Response to Neoadjuvant Chemoradiotherapy. Frontiers in Pharmacology, 2021, 12, 778781.	3.5	4
86	The use of pharmacogenetics to increase the safety of colorectal cancer patients treatedwith fluoropyrimidines. , 2019, 2, 116-130.		3
87	Pharmacogenetic score predicts overall survival, progression-free survival and platinum sensitivity in ovarian cancer. Pharmacogenomics, 2020, 21, 995-1010.	1.3	2
88	Improving decision making on DPYD and <i>UGT1A1*28</i> Âpatients' profiling with an innovative reimbursement strategy. Pharmacogenomics, 2018, 19, 301-304.	1.3	1
89	Pharmacogenetics in Cancer Management: Scenario for Tailored Therapy. , 2008, , 389-403.		1
90	Abstract 3889: <i>RPL28</i> promoter polymorphism rs4806668 is associated with reduced survival in FOLFIRI-treated metastatic colorectal cancer patients. Cancer Research, 2018, 78, 3889-3889.	0.9	1

#	Article	IF	CITATIONS
91	Pharmacogenetics of stomach cancer. I Supplementi Di Tumori, 2003, 2, S19-22.	0.1	1
92	Predicting drug response and toxicity in metastatic colorectal cancer: the role of germline markers. Expert Review of Clinical Pharmacology, 2022, 15, 689-713.	3.1	1
93	Reply to the Letter to the Editor from Chowbay et al. Clinical Cancer Research, 2006, 12, 1942.2-1942.	7.0	Ο
94	RPL28 Promoter polymorphism RS4806668 is associated with reduced survival in folfiri-treated metastatic colorectal cancer patients. Drug Metabolism and Pharmacokinetics, 2019, 34, S64-S65.	2.2	0
95	Abstract 4841: GSTM1 and GSTT1 polymorphisms in population-based study of colorectal cancer risk , 2013, , .		Ο