Attila Brunyanszki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12053482/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PARP-1 Inhibition Increases Mitochondrial Metabolism through SIRT1 Activation. Cell Metabolism, 2011, 13, 461-468.	16.2	673
2	PARP-2 Regulates SIRT1 Expression and Whole-Body Energy Expenditure. Cell Metabolism, 2011, 13, 450-460.	16.2	231
3	Regulation of Vascular Tone, Angiogenesis and Cellular Bioenergetics by the 3-Mercaptopyruvate Sulfurtransferase/H2S Pathway: Functional Impairment by Hyperglycemia and Restoration by dl-α-Lipoic Acid. Molecular Medicine, 2015, 21, 1-14.	4.4	121
4	Mitochondrial DNA damage and subsequent activation of Z-DNA binding protein 1 links oxidative stress to inflammation in epithelial cells. Scientific Reports, 2018, 8, 914.	3.3	100
5	Opposing roles of mitochondrial and nuclear PARP1 in the regulation of mitochondrial and nuclear DNA integrity: implications for the regulation of mitochondrial function. Nucleic Acids Research, 2014, 42, 13161-13173.	14.5	77
6	Poly(ADP-ribose) polymerase-2: emerging transcriptional roles of a DNA-repair protein. Cellular and Molecular Life Sciences, 2012, 69, 4079-4092.	5.4	68
7	Time-Dependent and Organ-Specific Changes in Mitochondrial Function, Mitochondrial DNA Integrity, Oxidative Stress and Mononuclear Cell Infiltration in a Mouse Model of Burn Injury. PLoS ONE, 2015, 10, e0143730.	2.5	65
8	Mitochondrial poly(ADP-ribose) polymerase: The Wizard of Oz at work. Free Radical Biology and Medicine, 2016, 100, 257-270.	2.9	62
9	In Search of Glycogen Phosphorylase Inhibitors: 5-Substituted 3-C-Glucopyranosyl-1,2,4-oxadiazoles from β-D-Glucopyranosyl Cyanides upon Cyclization ofO-Acylamidoxime Intermediates. European Journal of Organic Chemistry, 2006, 2006, 4242-4256.	2.4	54
10	Differentiation-Associated Downregulation of Poly(ADP-Ribose) Polymerase-1 Expression in Myoblasts Serves to Increase Their Resistance to Oxidative Stress. PLoS ONE, 2015, 10, e0134227.	2.5	42
11	PARP10 (ARTD10) modulates mitochondrial function. PLoS ONE, 2018, 13, e0187789.	2.5	40
12	Glycogen Phosphorylase Inhibitor N-(3,5-Dimethyl-Benzoyl)-N'-(β-D-Glucopyranosyl)Urea Improves Glucose Tolerance under Normoglycemic and Diabetic Conditions and Rearranges Hepatic Metabolism. PLoS ONE, 2013, 8, e69420.	2.5	39
13	Regulation of Mitochondrial Poly(ADP-Ribose) Polymerase Activation by the <i>β</i> -Adrenoceptor/cAMP/Protein Kinase A Axis during Oxidative Stress. Molecular Pharmacology, 2014, 86, 450-462.	2.3	37
14	Deletion of PARP-2 induces hepatic cholesterol accumulation and decrease in HDL levels. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 594-602.	3.8	36
15	Upregulation and Mitochondrial Sequestration of Hemoglobin Occur in Circulating Leukocytes during Critical Illness, Conferring a Cytoprotective Phenotype. Molecular Medicine, 2015, 21, 666-675.	4.4	24
16	Genetic Ablation of PARP-1 Protects Against Oxazolone-Induced Contact Hypersensitivity by Modulating Oxidative Stress. Journal of Investigative Dermatology, 2010, 130, 2629-2637.	0.7	23
17	Poly(ADP-Ribose) Polymerase Mediates Inflammation in a Mouse Model of Contact Hypersensitivity. Journal of Investigative Dermatology, 2009, 129, 234-238.	0.7	18
18	Poly(ADP) ribose polymerase-1 ablation alters eicosanoid and docosanoid signaling and metabolism in a murine model of contact hypersensitivity. Molecular Medicine Reports, 2015, 11, 2861-2867.	2.4	17