
Lee M Silver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12052286/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Authors' Response to Wong et al Genetic Testing and Molecular Biomarkers, 2016, 20, 414-415.	0.7	Ο
2	Carrier Screening is a Deficient Strategy for Determining Sperm Donor Eligibility and Reducing Risk of Disease in Recipient Children. Genetic Testing and Molecular Biomarkers, 2016, 20, 276-284.	0.7	23
3	Targeted mutation screening panels expose systematic population bias in detection of cystic fibrosis risk. Genetics in Medicine, 2016, 18, 174-179.	2.4	17
4	Social approach–avoidance behavior of inbred mouse strains towards DBA/2 mice. Brain Research, 2004, 1002, 151-157.	2.2	160
5	Tbx2 is essential for patterning the atrioventricular canal and for morphogenesis of the outflow tract during heart development. Development (Cambridge), 2004, 131, 5041-5052.	2.5	258
6	The maternally expressed zebrafish T-box gene eomesoderminregulates organizer formation. Development (Cambridge), 2003, 130, 5503-5517.	2.5	73
7	Biotechnology and Conceptualizations of the Soul. Cambridge Quarterly of Healthcare Ethics, 2003, 12, 335-341.	0.8	1
8	Identification of Quantitative Trait Loci That Affect Aggressive Behavior in Mice. Journal of Neuroscience, 2002, 22, 1165-1170.	3.6	83
9	T-box gene tbx5 is essential for formation of the pectoral limb bud. Nature, 2002, 417, 754-758.	27.8	198
10	What are clones?. Nature, 2001, 412, 21-21.	27.8	11
11	An axonemal dynein at the Hybrid Sterility 6 locus: implications for t haplotype-specific male sterility and the evolution of species barriers. Mammalian Genome, 2000, 11, 8-15.	2.2	47
12	tbx20 , a new vertebrate T-box gene expressed in the cranial motor neurons and developing cardiovascular structures in zebrafish. Mechanisms of Development, 2000, 95, 253-258.	1.7	80
13	Phylogenetic Analysis of T-Box Genes Demonstrates the Importance of Amphioxus for Understanding Evolution of the Vertebrate Genome. Genetics, 2000, 156, 1249-1257.	2.9	60
14	Bioethicists must come down to Earth. Nature, 1999, 399, 728-728.	27.8	0
15	Mapping and cloning recombinant breakpoints demarcating the Hybrid Sterility 6-specific sperm tail assembly defect. Mammalian Genome, 1999, 10, 88-94.	2.2	19
16	Mapping and expression analysis of the mouse ortholog of Xenopus Eomesodermin. Mechanisms of Development, 1999, 81, 205-208.	1.7	74
17	Sex-restricted non-Mendelian inheritance of mouse Chromosome 11 in the offspring of crosses between C57BL/6J and (C57BL/6J × DBA/2J)F 1 mice. Mammalian Genome, 1998, 9, 812-815.	2.2	20
18	Transgenic N-myc mouse model for indolent B cell lymphoma: tumor characterization and analysis of genetic alterations in spontaneous and retrovirally accelerated tumors. Oncogene, 1998, 17, 2073-2085.	5.9	29

#	Article	IF	CITATIONS
19	The T-box gene family. BioEssays, 1998, 20, 9-19.	2.5	280
20	Characterization of the zebrafish tbx16 gene and evolution of the vertebrate T-box family. Development Genes and Evolution, 1998, 208, 94-99.	0.9	65
21	Sex-specific modifiers of tail development in mice heterozygous for the brachyury (T) mutation. Mammalian Genome, 1998, 9, 107-110.	2.2	14
22	TBX10, a member of the Tbx1-subfamily of conserved developmental genes, is located at human Chromosome 11q13 and proximal mouse Chromosome 19. Mammalian Genome, 1998, 9, 397-399.	2.2	17
23	A major influence of sex-specific loci on alcohol preference in C57Bl/6 and DBA/2 inbred mice. Mammalian Genome, 1998, 9, 942-948.	2.2	63
24	Expression of T-box genes Tbx2–Tbx5 during chick organogenesis. Mechanisms of Development, 1998, 74, 165-169.	1.7	138
25	Low Frequency of t Haplotypes in Natural Populations of House Mice (Mus musculus domesticus). Evolution; International Journal of Organic Evolution, 1998, 52, 1185.	2.3	22
26	Cloning, Mapping, and Expression Analysis ofTBX15,a New Member of the T-Box Gene Family. Genomics, 1998, 51, 68-75.	2.9	45
27	LOW FREQUENCY OF <i>t </i> HAPLOTYPES IN NATURAL POPULATIONS OF HOUSE MICE (<i>MUS MUSCULUS)</i>	Ij ETQq1	1 0,784314 rg
28	Cloning, Ethics, and Religion. Cambridge Quarterly of Healthcare Ethics, 1998, 7, 168-172.	0.8	6
29	The T-box gene family. , 1998, 20, 9.		1
30	Three novel <i>T</i> -box genes in <i>Caenorhabditis elegans</i> . Genome, 1997, 40, 458-464.	2.0	23
31	Newly Identified Paralogous Groups on Mouse Chromosomes 5 and 11 Reveal the Age of a T-Box Cluster Duplication. Genomics, 1997, 40, 262-266.	2.9	44
32	Genetics goes to Hollywood. Nature Genetics, 1997, 17, 260-261.	21.4	7
33	Impact of Migration and Fitness on the Stability of Lethal <i>t</i> -Haplotype Polymorphism in <i>Mus musculus:</i> A Computer Study. Genetics, 1997, 145, 1093-1108.	2.9	25
34	Tbx6,a Mouse T-Box Gene Implicated in Paraxial Mesoderm Formation at Gastrulation. Developmental Biology, 1996, 180, 534-542.	2.0	245
35	Recent evolution of mouse t haplotypes at polymorphic microsatellites associated with the t complex responder (Tcr) locus. Genetical Research, 1996, 67, 1-10.	0.9	15
36	Promoter mapping of the mouseTcp-10bt gene in transgenic mice identifies essential male germ cell regulatory sequences. Molecular Reproduction and Development, 1996, 43, 290-297.	2.0	12

#	Article	IF	CITATIONS
37	Expression of the T-box family genes,Tbx1-Tbx5, during early mouse development. Developmental Dynamics, 1996, 206, 379-390.	1.8	581
38	Identification of sex–specific quantitative trait loci controlling alcohol preference in C57BL/6 mice. Nature Genetics, 1996, 13, 147-153.	21.4	196
39	Expression of the T-box family genes, Tbx1–Tbx5, during early mouse development. , 1996, 206, 379.		1
40	Evolution of Mouse <i>T-box</i> Genes by Tandem Duplication and Cluster Dispersion. Genetics, 1996, 144, 249-254.	2.9	173
41	Low Frequency of Mouse <i>t</i> Haplotypes in Wild Populations Is Not Explained by Modifiers of Meiotic Drive. Genetics, 1996, 144, 1787-1797.	2.9	43
42	Conservation of the T-box gene family from Mus musculus to Caenorhabditis elegans. Genomics, 1995, 25, 214-219.	2.9	66
43	An ancient family of embryonically expressed mouse genes sharing a conserved protein motif with the T locus. Nature Genetics, 1994, 7, 383-389.	21.4	210
44	False association of human ESTs. Nature Genetics, 1994, 8, 321-322.	21.4	9
45	The Acquisition of Sex: <i>Molecular Genetics of Sex Determination</i> . Stephen S. Wachtel, Ed. Academic Press, San Diego, CA, 1993. xviii, 518 pp., illus. \$89 or £68 Science, 1994, 264, 116-116.	12.6	Ο
46	Authors and readers. Mammalian Genome, 1993, 4, 465-465.	2.2	4
47	The peculiar journey of a selfish chromosome: mouse t haplotypes and meiotic drive. Trends in Genetics, 1993, 9, 250-254.	6.7	246
48	Hybrid Sterility-6: A Mouse t Complex Locus Controlling Sperm Flagellar Assembly and Movement. Developmental Biology, 1993, 159, 631-642.	2.0	63
49	High-Resolution Comparative Mapping of Mouse Chromosome 17. Genomics, 1993, 17, 110-120.	2.9	28
50	Factors that may Regulate Assembly of the Mammalian Sperm Tail Deduced from a Mouse t Complex Mutation. Biology of Reproduction, 1993, 49, 1347-1352.	2.7	28
51	The mouse t complex distorter-3 (Tcd-3) locus and transmission ratio distortion. Genetical Research, 1993, 62, 133-137.	0.9	8
52	Concerted evolution of the mouse Tcp-10 gene family: Implications for the functional basis of t haplotype transmission ratio distortion. Genomics, 1992, 12, 35-41.	2.9	13
53	Genetic mapping of three human homologues of murine t-complex genes localizes TCP10 to 6q27, 15 cM distal to TCP1 and PLG. Genomics, 1992, 12, 826-828.	2.9	13
54	Localization of the Mas proto-oncogene to a densely marked region of mouse chromosome 17 associated with genomic imprinting. Genomics, 1992, 13, 444-446.	2.9	15

#	Article	IF	CITATIONS
55	Delineation of the t complex on mouse Chromosome 17 by in situ hybridization. Mammalian Genome, 1992, 2, 201-205.	2.2	2
56	Distortion of transmission ratio by a candidate t complex responder locus transgene. Mammalian Genome, 1992, 3, 588-596.	2.2	6
57	Mouse Chromosome 17. Mammalian Genome, 1992, 3, S241-S260.	2.2	39
58	Bouncing off microsatellites. Nature Genetics, 1992, 2, 8-9.	21.4	17
59	Allele- and haploid-specific product generated by alternative splicing from a mouse t complex responder locus candidate. Nature, 1991, 349, 239-241.	27.8	46
60	Mouse chromosome 17. Mammalian Genome, 1991, 1, S280-S300.	2.2	29
61	At the crossroads of developmental genetics: The cloning of the classical mouseT locus. BioEssays, 1990, 12, 377-380.	2.5	7
62	Molecular cloning of the t complex responder genetic locus. Genomics, 1990, 8, 134-140.	2.9	27
63	Gene dosage effects on transmission ratio distortion and fertility in mice that carry <i>t</i> haplotypes. Genetical Research, 1989, 54, 221-225.	0.9	36
64	A mouse chromosome 17 gene encodes a testes-specific transcript with unusual properties. Immunogenetics, 1989, 30, 34-41.	2.4	33
65	Human homologs of two testes-expressed loci on mouse chromosome 17 map to opposite arms of chromosome 6. Genomics, 1989, 5, 139-143.	2.9	37
66	A candidate gene family for the mouse t complex responder (Tcr) locus responsible for haploid effects on sperm function. Cell, 1988, 55, 71-78.	28.9	86
67	Five of the nine genetically defined regions of mouse t haplotypes are involved in transmission ratio distortion. Genetical Research, 1987, 49, 51-56.	0.9	106
68	Synthesis of mouse t complex proteins during haploid stages of spermatogenesis. Developmental Biology, 1987, 119, 605-608.	2.0	49
69	Establishment of embryonic stem cell lines from preimplantation mouse embryos homozygous for lethal mutations in the t-complex. Developmental Biology, 1987, 121, 20-28.	2.0	26
70	An unstable family of large DNA elements in the center of the mouse t complex. Journal of Molecular Biology, 1987, 194, 583-594.	4.2	71
71	NONHOMOLOGOUS PAIRING IN MICE HETEROZYGOUS FOR A t HAPLOTYPE CAN PRODUCE RECOMBINANT CHROMOSOMES WITH DUPLICATIONS AND DELETIONS. Genetics, 1986, 113, 723-734.	2.9	64
72	GENETIC ANALYSIS OF A MOUSE t COMPLEX LOCUS THAT IS HOMOLOGOUS TO A KIDNEY cDNA CLONE. Genetics, 1986, 114, 993-1006.	2.9	57

#	Article	IF	CITATIONS
73	A new spontaneous mutation at the tufted locus within a mouse <i>t</i> haplotype. Genetical Research, 1985, 45, 107-112.	0.9	3
74	Molecular probes define different regions of the mouse t complex. Cell, 1985, 40, 63-69.	28.9	134
75	An alpha globin pseudogene is located within the mouse t complex. Immunogenetics, 1984, 19, 125-130.	2.4	48
76	Transmission ratio distortion of mouse t haplotypes is not a consequence of wild-type sperm degeneration. Developmental Biology, 1984, 105, 250-252.	2.0	41
77	Molecular clones of the mouse t complex derived from microdissected metaphase chromosomes. Cell, 1984, 36, 783-788.	28.9	224
78	The differential expression of the actins and tubulins during spermatogenesis in the mouse. Experimental Cell Research, 1984, 153, 275-280.	2.6	50
79	Persistence of a lethal <i>t</i> haplotype in a laboratory stock of outbred mice. Genetical Research, 1984, 43, 21-25.	0.9	6
80	Molecular Studies of Mouse Chromosome 17 and the T Complex. , 1984, , 141-156.		2
81	CHARACTERIZATION OF A RECOMBINANT MOUSE <i>t</i> HAPLOTYPE THAT EXPRESSES A DOMINANT LETHAL MATERNAL EFFECT. Genetics, 1984, 108, 1013-1020.	2.9	78
82	Tor1 is a novel, variant form of mouse chromosome 17 with a deletion in a partial t haplotype. Nature, 1983, 301, 422-424.	27.8	24
83	Reevaluation of the evidence for the generation of new lethal t haplotypes by mutation. Immunogenetics, 1983, 18, 91-96.	2.4	6
84	A diversified set of testicular cell proteins specified by genes within the mouse t complex. Cell, 1983, 35, 35-45.	28.9	78
85	Genomic analysis of the H-2 complex region associated with mouse t Haplotypes. Cell, 1982, 29, 961-968.	28.9	76
86	A gene product of the mouse t complex with chemical properties of a cell surface-associated component of the extracellular matrix. Developmental Biology, 1982, 91, 423-430.	2.0	26
87	Pluripotent embryonic stem cell lines can be derived from tw5/tw5 blastocysts. Nature, 1982, 298, 750-753.	27.8	70
88	Genetic organization of the mouse t complex. Cell, 1981, 27, 239-240.	28.9	56
89	A structural gene (Tcp-1) within the mouse t complex is separable from effects on tail length and lethality but may be associated with effects on spermatogenesis. Genetical Research, 1981, 38, 115-123.	0.9	34
90	Recombination suppression of mouse t-haplotypes due to chromatin mismatching. Nature, 1981, 290, 68-70.	27.8	96

#	Article	IF	CITATIONS
91	Conservation of nonhistone chromosomal proteins through dipteran evolution. Chromosoma, 1980, 79, 65-74.	2.2	5
92	Molecular analysis of the genetic relationship of trans interacting factors at the T/t complex. Nature, 1980, 288, 368-370.	27.8	24
93	Cell-free translation of a Tt complex cell surface-associated gene product. Cell, 1980, 22, 901-904.	28.9	19
94	A major testicular cell protein specified by a mouse T/t complex gene. Cell, 1979, 17, 275-284.	28.9	161
95	Chapter 4 Immunofluorescent Analysis of Chroma Structure in Relation to Gene Activity: A Speculative Essay. Current Topics in Developmental Biology, 1979, 13 Pt 1, 71-88.	2.2	11
96	Production and characterization of antisera against three individual NHC proteins; a case of a generally distributed NHC protein. Chromosoma, 1978, 68, 101-114.	2.2	18
97	Distribution patterns of three subfractions of drosophila nonhistone chromosomal proteins: possible correlations with gene activity. Cell, 1977, 11, 971-983.	28.9	64