Zehedina Khatun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12050902/publications.pdf

Version: 2024-02-01

567281 888059 1,554 17 15 17 citations h-index g-index papers 17 17 17 3165 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Bile acid linked \hat{l}^2 -glucan nanoparticles for liver specific oral delivery of biologics. Biomaterials Science, 2022, 10, 2929-2939.	5.4	5
2	Biomaterials and Bioengineering Approaches for Mitochondria and Nuclear Targeting Drug Delivery. ACS Biomaterials Science and Engineering, 2019, 5, 1645-1660.	5.2	27
3	Bioreducible Poly(ethylene glycol)–Triphenylphosphonium Conjugate as a Bioactivable Mitochondria-Targeting Nanocarrier. Biomacromolecules, 2017, 18, 1074-1085.	5 . 4	38
4	Thermosensitive hexanoyl glycol chitosan-based ocular delivery system for glaucoma therapy. Acta Biomaterialia, 2016, 39, 124-132.	8.3	76
5	Design and strategies for bile acid mediated therapy and imaging. RSC Advances, 2016, 6, 73986-74002.	3.6	47
6	A hyaluronic acid nanogel for photo–chemo theranostics of lung cancer with simultaneous light-responsive controlled release of doxorubicin. Nanoscale, 2015, 7, 10680-10689.	5 . 6	115
7	Optical imaging, biodistribution and toxicity of orally administered quantum dots loaded heparin-deoxycholic acid. Macromolecular Research, 2015, 23, 686-695.	2.4	13
8	Oral absorption mechanism and anti-angiogenesis effect of taurocholic acid-linked heparin-docetaxel conjugates. Journal of Controlled Release, 2014, 177, 64-73.	9.9	46
9	Photoluminescent Graphene Nanoparticles for Cancer Phototherapy and Imaging. ACS Applied Materials & Samp; Interfaces, 2014, 6, 12413-12421.	8.0	136
10	<i>In Vivo</i> Biodistribution and Toxicology of Carboxylated Graphene Quantum Dots. ACS Nano, 2013, 7, 6858-6867.	14.6	466
11	Surface Coating of Graphene Quantum Dots Using Mussel-Inspired Polydopamine for Biomedical Optical Imaging. ACS Applied Materials & Samp; Interfaces, 2013, 5, 8246-8253.	8.0	136
12	Oral delivery of taurocholic acid linked heparin–docetaxel conjugates for cancer therapy. Journal of Controlled Release, 2013, 170, 74-82.	9.9	73
13	Near infra-red photoluminescent graphene nanoparticles greatly expand their use in noninvasive biomedical imaging. Chemical Communications, 2013, 49, 5079.	4.1	98
14	Imaging of the GI tract by QDs loaded heparin–deoxycholic acid (DOCA) nanoparticles. Carbohydrate Polymers, 2012, 90, 1461-1468.	10.2	28
15	Oral Delivery of Near-Infrared Quantum Dot Loaded Micelles for Noninvasive Biomedical Imaging. ACS Applied Materials & Samp; Interfaces, 2012, 4, 3880-3887.	8.0	33
16	Heparin based nanoparticles for cancer targeting and noninvasive imaging. Quantitative Imaging in Medicine and Surgery, 2012, 2, 219-26.	2.0	25
17	Blood Compatible Graphene/Heparin Conjugate through Noncovalent Chemistry. Biomacromolecules, 2011, 12, 336-341.	5 . 4	192