
Violette Geissen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12048941/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soil quality – A critical review. Soil Biology and Biochemistry, 2018, 120, 105-125.	8.8	1,441
2	An overview of microplastic and nanoplastic pollution in agroecosystems. Science of the Total Environment, 2018, 627, 1377-1388.	8.0	846
3	Microplastics in the Terrestrial Ecosystem: Implications for <i>Lumbricus terrestris</i> (Oligochaeta,) Tj ETQq1 1	0.784314 10.0	rgBT /Overlo 844
4	Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Science of the Total Environment, 2019, 671, 411-420.	8.0	781
5	Emerging pollutants in the environment: A challenge for water resource management. International Soil and Water Conservation Research, 2015, 3, 57-65.	6.5	714
6	Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Science of the Total Environment, 2018, 645, 1048-1056.	8.0	711
7	Pesticide residues in European agricultural soils – A hidden reality unfolded. Science of the Total Environment, 2019, 653, 1532-1545.	8.0	627
8	Field evidence for transfer of plastic debris along a terrestrial food chain. Scientific Reports, 2017, 7, 14071.	3.3	523
9	Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere, 2017, 185, 907-917.	8.2	515
10	Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environmental Pollution, 2017, 220, 523-531.	7.5	479
11	Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils. Environmental Pollution, 2020, 261, 114198.	7.5	353
12	Effects of plastic mulch film residues on wheat rhizosphere and soil properties. Journal of Hazardous Materials, 2020, 387, 121711.	12.4	347
13	A simple method for the extraction and identification of light density microplastics from soil. Science of the Total Environment, 2018, 616-617, 1056-1065.	8.0	325
14	Decay of low-density polyethylene by bacteria extracted from earthworm's guts: A potential for soil restoration. Science of the Total Environment, 2018, 624, 753-757.	8.0	297
15	Distribution of glyphosate and aminomethylphosphonic acid (AMPA) in agricultural topsoils of the European Union. Science of the Total Environment, 2018, 621, 1352-1359.	8.0	246
16	Wind erosion as a driver for transport of light density microplastics. Science of the Total Environment, 2019, 669, 273-281.	8.0	236
17	Response of common bean (Phaseolus vulgaris L.) growth to soil contaminated with microplastics. Science of the Total Environment, 2021, 755, 142516.	8.0	170
18	Impact of plastic mulch film debris on soil physicochemical and hydrological properties. Environmental Pollution, 2020, 266, 115097.	7.5	162

#	Article	IF	CITATIONS
19	Persistence of glyphosate and aminomethylphosphonic acid in loess soil under different combinations of temperature, soil moisture and light/darkness. Science of the Total Environment, 2016, 572, 301-311.	8.0	158
20	Microplastics occurrence and frequency in soils under different land uses on a regional scale. Science of the Total Environment, 2021, 752, 141917.	8.0	158
21	Factors affecting farmers' behaviour in pesticide use: Insights from a field study in northern China. Science of the Total Environment, 2015, 537, 360-368.	8.0	153
22	Low density-microplastics detected in sheep faeces and soil: A case study from the intensive vegetable farming in Southeast Spain. Science of the Total Environment, 2021, 755, 142653.	8.0	148
23	Effects of wildfire on soil nutrients in Mediterranean ecosystems. Earth-Science Reviews, 2014, 139, 47-58.	9.1	147
24	Extension of a GIS procedure for calculating the RUSLE equation LS factor. Computers and Geosciences, 2013, 52, 177-188.	4.2	144
25	Influence of microplastic addition on glyphosate decay and soil microbial activities in Chinese loess soil. Environmental Pollution, 2018, 242, 338-347.	7.5	141
26	Pesticide residues in Nepalese vegetables and potential health risks. Environmental Research, 2019, 172, 511-521.	7.5	140
27	Predicting soil microplastic concentration using vis-NIR spectroscopy. Science of the Total Environment, 2019, 650, 922-932.	8.0	140
28	Leaching of microplastics by preferential flow in earthworm (Lumbricus terrestris) burrows. Environmental Chemistry, 2019, 16, 31.	1.5	116
29	Concentration and distribution of pesticide residues in soil: Non-dietary human health risk assessment. Chemosphere, 2020, 253, 126594.	8.2	112
30	Farmer and retailer knowledge and awareness of the risks from pesticide use: A case study in the Wei River catchment, China. Science of the Total Environment, 2014, 497-498, 172-179.	8.0	104
31	Microplastic pollution alters forest soil microbiome. Journal of Hazardous Materials, 2021, 409, 124606.	12.4	100
32	Cocktails of pesticide residues in conventional and organic farming systems in Europe – Legacy of the past and turning point for the future. Environmental Pollution, 2021, 278, 116827.	7.5	90
33	Distribution and bioconcentration of heavy metals in a tropical aquatic food web: A case study of a tropical estuarine lagoon in SE Mexico. Environmental Pollution, 2016, 210, 155-165.	7.5	89
34	Effect of different polymers of microplastics on soil organic carbon and nitrogen – A mesocosm experiment. Environmental Research, 2022, 204, 111938.	7.5	83
35	Short-term transport of glyphosate with erosion in Chinese loess soil — A flume experiment. Science of the Total Environment, 2015, 512-513, 406-414.	8.0	81
36	Factors affecting pesticide safety behaviour: The perceptions of Nepalese farmers and retailers. Science of the Total Environment, 2018, 631-632, 1560-1571.	8.0	79

#	Article	IF	CITATIONS
37	An improved method for calculating slope length (λ) and the LS parameters of the Revised Universal Soil Loss Equation for large watersheds. Geoderma, 2017, 308, 36-45.	5.1	78
38	Vegetable farmers' behaviour and knowledge related to pesticide use and related health problems: A case study from Bangladesh. Journal of Cleaner Production, 2018, 200, 122-133.	9.3	78
39	Review of microplastic sources, transport pathways and correlations with other soil stressors: a journey from agricultural sites into the environment. Chemical and Biological Technologies in Agriculture, 2022, 9, .	4.6	69
40	Glyphosate and AMPA distribution in wind-eroded sediment derived from loess soil. Environmental Pollution, 2017, 220, 1079-1089.	7.5	67
41	Sources of Light Density Microplastic Related to Two Agricultural Practices: The Use of Compost and Plastic Mulch. Environments - MDPI, 2021, 8, 36.	3.3	57
42	Soil and Water Pollution in a Banana Production Region in Tropical Mexico. Bulletin of Environmental Contamination and Toxicology, 2010, 85, 407-413.	2.7	52
43	Factors Affecting Domestic Water Consumption in Rural Households upon Access to Improved Water Supply: Insights from the Wei River Basin, China. PLoS ONE, 2013, 8, e71977.	2.5	52
44	Biogenic transport of glyphosate in the presence of LDPE microplastics: A mesocosm experiment. Environmental Pollution, 2019, 245, 829-835.	7.5	51
45	Mulching as a strategy to improve soil properties and reduce soil erodibility in coffee farming systems of Rwanda. Catena, 2017, 149, 43-51.	5.0	47
46	Decay characteristics and erosion-related transport of glyphosate in Chinese loess soil under field conditions. Science of the Total Environment, 2015, 530-531, 87-95.	8.0	46
47	Effect of fire frequency on runoff, soil erosion, and loss of organic matter at the micro-plot scale in north-central Portugal. Geoderma, 2016, 269, 126-137.	5.1	45
48	Domestic Water Consumption under Intermittent and Continuous Modes of Water Supply. Water Resources Management, 2014, 28, 853-865.	3.9	44
49	Dynamics of glyphosate and AMPA in the soil surface layer of glyphosate-resistant crop cultivations in the loess Pampas of Argentina. Environmental Pollution, 2019, 244, 323-331.	7.5	44
50	Assessing the effect of water harvesting techniques on event-based hydrological responses and sediment yield at a catchment scale in northern Ethiopia using the Limburg Soil Erosion Model (LISEM). Catena, 2017, 159, 20-34.	5.0	43
51	Water use patterns and conservation in households of Wei River Basin, China. Resources, Conservation and Recycling, 2013, 74, 45-53.	10.8	41
52	Ecological risk assessment of pesticide residues in soils from vegetable production areas: A case study in S-Nepal. Science of the Total Environment, 2021, 788, 147921.	8.0	41
53	Assessment of promising agricultural management practices. Science of the Total Environment, 2019, 649, 610-619.	8.0	38
54	Effect of <i>In Situ</i> Water Harvesting Techniques on Soil and Nutrient Losses in Semiâ€Arid Northern Ethiopia. Land Degradation and Development, 2017, 28, 1016-1027.	3.9	36

#	Article	IF	CITATIONS
55	Effects of plastic mulching on the accumulation and distribution of macro and micro plastics in soils of two farming systems in Northwest China. PeerJ, 2020, 8, e10375.	2.0	36
56	Effects of elevated CO 2 and drought on the microbial biomass and enzymatic activities in the rhizospheres of two grass species in Chinese loess soil. Geoderma, 2017, 286, 25-34.	5.1	34
57	Is the Polylactic Acid Fiber in Green Compost a Risk for Lumbricus terrestris and Triticum aestivum?. Polymers, 2021, 13, 703.	4.5	34
58	A decision support approach for the selection and implementation of water harvesting techniques in arid and semi-arid regions. Agricultural Water Management, 2016, 173, 35-47.	5.6	33
59	An integrated algorithm to evaluate flow direction and flow accumulation in flat regions of hydrologically corrected DEMs. Catena, 2017, 151, 174-181.	5.0	33
60	GIS-Based Multi-Criteria Analysis for Arabica Coffee Expansion in Rwanda. PLoS ONE, 2014, 9, e107449.	2.5	32
61	Silver nanoparticles in soil: Aqueous extraction combined with single-particle ICP-MS for detection and characterization. Environmental Nanotechnology, Monitoring and Management, 2017, 7, 24-33.	2.9	31
62	Pollutants in drainage channels following longâ€ŧerm application of Mancozeb to banana plantations in southeastern Mexico. Journal of Plant Nutrition and Soil Science, 2008, 171, 597-604.	1.9	29
63	Environmental and human health at risk – Scenarios to achieve the Farm to Fork 50% pesticide reduction goals. Environment International, 2022, 165, 107296.	10.0	29
64	Effects of fire occurrence and recurrence on nitrogen and phosphorus losses by overland flow in maritime pine plantations in north-central Portugal. Geoderma, 2017, 289, 97-106.	5.1	26
65	Tracking the Transport of Silver Nanoparticles in Soil: a Saturated Column Experiment. Water, Air, and Soil Pollution, 2018, 229, 334.	2.4	25
66	Effect of Integrated Water-Nutrient Management Strategies on Soil Erosion Mediated Nutrient Loss and Crop Productivity in Cabo Verde Drylands. PLoS ONE, 2015, 10, e0134244.	2.5	22
67	Spatial glyphosate and AMPA redistribution on the soil surface driven by sediment transport processes – A flume experiment. Environmental Pollution, 2018, 234, 1011-1020.	7.5	20
68	Investigation of the 2018 Shiraz dust event: Potential sources of metals, rare earth elements, and radionuclides; health assessment. Chemosphere, 2021, 279, 130533.	8.2	20
69	Visual assessment of the impact of agricultural management practices on soil quality. Agronomy Journal, 2020, 112, 2608-2623.	1.8	19
70	Plastic mulch film residues in agriculture: impact on soil suppressiveness, plant growth, and microbial communities. FEMS Microbiology Ecology, 2022, 98, .	2.7	18
71	Effect of Vermicompost on the Growth and Production Of Amashito Pepper, Interactions with Earthworms and Rhizobacteria. Compost Science and Utilization, 2010, 18, 282-288.	1.2	17
72	Limits to the bioindication potential of Collembola in environmental impact analysis: a case study of forest soil-liming and fertilization. Biology and Fertility of Soils, 2004, 39, 383-390.	4.3	16

#	Article	IF	CITATIONS
73	Effects of different land use on soil chemical properties, decomposition rate and earthworm communities in tropical Mexico. Pedobiologia, 2009, 53, 75-86.	1.2	16
74	Assessing the impact of human interventions on floods and low flows in the Wei River Basin in China using the LISFLOOD model. Science of the Total Environment, 2019, 653, 1077-1094.	8.0	16
75	A laboratory comparison of the interactions between three plastic mulch types and 38 active substances found in pesticides. PeerJ, 2020, 8, e9876.	2.0	15
76	Pesticide screening and health risk assessment of residential dust in a rural region of the North China Plain. Chemosphere, 2022, 303, 135115.	8.2	15
77	Temporal predictability of soil microarthropod communities in temperate forests. Pedobiologia, 2005, 49, 41-50.	1.2	14
78	Integration of transport concepts for risk assessment of pesticide erosion. Science of the Total Environment, 2016, 551-552, 563-570.	8.0	14
79	Effects of microplastics and earthworm burrows on soil macropore water flow within a laboratory soil column setup. Vadose Zone Journal, 2020, 19, e20059.	2.2	14
80	Improving on-site water availability by combining in-situ water harvesting techniques in semi-arid Northern Ethiopia. Agricultural Water Management, 2017, 193, 153-162.	5.6	13
81	Towards an ecological index for tropical soil quality based on soil macrofauna. Pesquisa Agropecuaria Brasileira, 2009, 44, 1056-1062.	0.9	12
82	Developing generalized parameters for post-fire erosion risk assessment using the revised Morgan-Morgan-Finney model: A test for north-central Portuguese pine stands. Catena, 2018, 165, 358-368.	5.0	12
83	Pesticide usage practices and the exposure risk to pollinators: A case study in the North China Plain. Ecotoxicology and Environmental Safety, 2022, 241, 113713.	6.0	11
84	Indicators of environmentally sound land use in the humid tropics: The potential roles of expert opinion, knowledge engineering and knowledge discovery. Ecological Indicators, 2010, 10, 320-329.	6.3	10
85	Water quality under intensive banana production and extensive pastureland in tropical Mexico. Journal of Plant Nutrition and Soil Science, 2012, 175, 553-559.	1.9	10
86	Mulching effects on soil nutrient levels and yield in coffee farming systems in Rwanda. Soil Use and Management, 2020, 36, 58-70.	4.9	10
87	Formation and decay of ethylenethiourea (ETU) in soil and water under tropical conditions. Journal of Plant Nutrition and Soil Science, 2013, 176, 40-46.	1.9	9
88	Transport of silver nanoparticles by runoff and erosion – A flume experiment. Science of the Total Environment, 2017, 601-602, 1418-1426.	8.0	9
89	Microplastics in Soil Ecosystem: Insight on Its Fate and Impacts on Soil Quality. Handbook of Environmental Chemistry, 2020, , 245-258.	0.4	9
90	Collection of human and environmental data on pesticide use in Europe and Argentina: Field study protocol for the SPRINT project. PLoS ONE, 2021, 16, e0259748.	2.5	9

#	Article	IF	CITATIONS
91	The short-term effectiveness of surfactant seed coating and mulching treatment in reducing post-fire runoff and erosion. Geoderma, 2017, 307, 231-237.	5.1	8
92	An integrated method for calculating DEM-based RUSLE LS. Earth Science Informatics, 2018, 11, 579-590.	3.2	7
93	A Multi-Criteria Index for Ecological Evaluation of Tropical Agriculture in Southeastern Mexico. PLoS ONE, 2014, 9, e112493.	2.5	7
94	Parks and Recreational Areas as Sinks of Plastic Debris in Urban Sites: The Case of Light-Density Microplastics in the City of Amsterdam, The Netherlands. Environments - MDPI, 2022, 9, 5.	3.3	7
95	Morphospecies Abundance of Above-Ground Invertebrates in Agricultural Systems under Glyphosate and Microplastics in South-Eastern Mexico. Environments - MDPI, 2021, 8, 130.	3.3	6
96	Pesticides are Substantially Transported in Particulate Phase, Driven by Land use, Rainfall Event and Pesticide Characteristics—A Runoff and Erosion Study in a Small Agricultural Catchment. Frontiers in Environmental Science, 2022, 10, .	3.3	5
97	An optimized method for extracting slope length in RUSLE from raster digital elevation. Catena, 2022, 209, 105818.	5.0	4
98	Effects of chloropicrin fumigation and azoxystrobin application on ginger growth and phosphorus uptake. Ecotoxicology and Environmental Safety, 2022, 232, 113246.	6.0	4
99	Assessing the Biophysical Impact and Financial Viability of Soil Management Technologies Under Variable Climate in Cabo Verde Drylands: The PESERAâ€DESMICE Approach. Land Degradation and Development, 2016, 27, 1679-1690.	3.9	3
100	Variations of soil phosphatase activity and phosphorus fractions in ginger fields exposed to different years of chloropicrin fumigation. Journal of Soils and Sediments, 0, , 1.	3.0	3
101	Promising Agricultural Management Practices and Soil Threats in Europe and China. Innovations in Landscape Research, 2021, , 195-213.	0.4	Ο