
George P Livi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12048216/publications.pdf Version: 2024-02-01

GEORGE PLIVI

#	Article	IF	CITATIONS
1	A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature, 1994, 372, 739-746.	27.8	3,244
2	Pyridinyl Imidazole Inhibitors of p38 Mitogen-activated Protein Kinase Bind in the ATP Site. Journal of Biological Chemistry, 1997, 272, 12116-12121.	3.4	519
3	Neuroprotective Role of the Reaper-Related Serine Protease HtrA2/Omi Revealed by Targeted Deletion in Mice. Molecular and Cellular Biology, 2004, 24, 9848-9862.	2.3	367
4	ldentification of Mitogen-activated Protein (MAP) Kinase-activated Protein Kinase-3, a Novel Substrate of CSBP p38 MAP Kinase. Journal of Biological Chemistry, 1996, 271, 8488-8492.	3.4	324
5	A G Protein-coupled Receptor for UDP-glucose. Journal of Biological Chemistry, 2000, 275, 10767-10771.	3.4	307
6	Characterization of human HtrA2, a novel serine protease involved in the mammalian cellular stress response. FEBS Journal, 2000, 267, 5699-5710.	0.2	227
7	Acquisition of Sensitivity of Stress-activated Protein Kinases to the p38 Inhibitor, SB 203580, by Alteration of One or More Amino Acids within the ATP Binding Pocket. Journal of Biological Chemistry, 1998, 273, 15605-15610.	3.4	207
8	The yeast FKS1 gene encodes a novel membrane protein, mutations in which confer FK506 and cyclosporin A hypersensitivity and calcineurin-dependent growth. Gene, 1994, 151, 61-71.	2.2	85
9	Cloning, Pharmacology, and Tissue Distribution of G-Protein-Coupled Receptor GPR105 (KIAA0001) Rodent Orthologs. Genomics, 2001, 78, 124-128.	2.9	70
10	A second cyclophilin-related gene inSaccharomyces cerevisiae. Nucleic Acids Research, 1990, 18, 1643-1643.	14.5	66
11	Use of polymerase chain reaction for rapid detection of gene insertions in whole yeast cells. Nucleic Acids Research, 1991, 19, 4775-4775.	14.5	61
12	SUM1, AN APPARENT POSITIVE REGULATOR OF THE CRYPTIC MATING-TYPE LOCI IN SACCHAROMYCES CEREVISIAE. Genetics, 1985, 111, 745-758.	2.9	54
13	Regulation and secretion of early developmentally controlled enzymes during axenic growth in Dictyostelium discoideum. Developmental Biology, 1981, 84, 407-416.	2.0	53
14	Yeast TOR (DRR) proteins: amino-acid sequence alignment and identification of structural motifs. Gene, 1994, 141, 133-136.	2.2	53
15	A Candida albicans homolog of a human cyclophilin gene encodes a peptidyl-prolyl cis-trans isomerase. Gene, 1990, 96, 189-195.	2.2	49
16	Human Mitogen-activated Protein Kinase CSBP1, but Not CSBP2, Complements a hog1 Deletion in Yeast. Journal of Biological Chemistry, 1995, 270, 29043-29046.	3.4	47
17	The yeast cyclophilin multigene family: purification, cloning and characterization of a new isoform. Gene, 1992, 111, 85-92.	2.2	43
18	The CYP2 gene of Saccharomyces cerevisiae encodes a cyclosporin A-sensitive peptidyl-prolyl cis-trans isomerase with an N-terminal signal sequence. Gene, 1991, 108, 73-80.	2.2	38

George P Livi

#	Article	IF	CITATIONS
19	UDP-glucose modulates gastric function through P2Y ₁₄ receptor-dependent and -independent mechanisms. American Journal of Physiology - Renal Physiology, 2009, 296, G923-G930.	3.4	36
20	The tyrosine89 residue of yeast FKBP12 is required for rapamycin binding. Gene, 1993, 129, 159-165.	2.2	32
21	Cloning and sequence analysis of a rapamycin-binding protein-encoding gene (RBP1) from Candida albicans. Gene, 1992, 113, 125-127.	2.2	31
22	[65] Secretory mutants in the cellular slime mold Dictyostelium discoideum. Methods in Enzymology, 1983, 96, 815-828.	1.0	30
23	Regulation of lysosomal α-mannosidase-1 synthesis during development in Dictyostelium discoideum. Developmental Biology, 1985, 110, 514-520.	2.0	21
24	α-Mannosidase-1 mutants of Dictyostelium dkoideum: Early aggregation-essential genes regulate enzyme precursor synthesis, modification, and processing. Differentiation, 1985, 29, 207-215.	1.9	17
25	Cloning and expression of the ARO3 gene encoding DAHP synthase from Candida albicans. Gene, 1993, 132, 159-165.	2.2	16
26	A GCN-like response in Candida albicans Cell Biology International, 1995, 19, 65-70.	3.0	12
27	Characterization of two human cAMP-specific phosphodiesterase subtypes expressed in baculovirus-infected insect cells Cell Biology International, 1995, 19, 477-484.	3.0	12
28	The ARO4 gene of Candida albicans encodes a tyrosine-sensitive DAHP synthase: evolution, functional conservation and phenotype of Aro3p-, Aro4p-deficient mutants The GenBank accession number for the sequence reported in this paper is U53216 Microbiology (United Kingdom), 2002, 148, 1291-1303.	1.8	12
29	Accumulation of α-mannosidase-1 in Dictyostelium discoideum requires many developmentally essential genes. Developmental Biology, 1984, 101, 503-511.	2.0	10
30	Halcyon days of TOR: Reflections on the multiple independent discovery of the yeast and mammalian TOR proteins. Gene, 2019, 692, 145-155.	2.2	10
31	MATING-TYPE REGULATION OF METHYL METHANESULFONATE SENSITIVITY IN SACCHAROMYCES CEREVISIAE. Genetics, 1980, 95, 259-271.	2.9	10
32	Missense mutations at the FKBP12-rapamycin-binding site of TOR1. Gene, 1996, 172, 143-147.	2.2	9
33	Constitutive promoter modules for PCR-based gene modification inSaccharomyces cerevisiae. Yeast, 2001, 18, 723-728.	1.7	8
34	A late developmental change in lysosomal enzyme sulfation specific to newly synthesized proteins in Dictyostelium discoideum. Developmental Biology, 1987, 121, 293-300.	2.0	5
35	Aromatic amino-acid biosynthesis inCandida albicans: identification of theARO4 gene encoding a second DAHP synthase. Current Genetics, 1996, 29, 441-445.	1.7	5
36	Lysosomal enzyme inactivation associated with defects in post-translational modification during development in Dictyostelium discoideum. Differentiation, 1985, 30, 83-91.	1.9	4

#	Article	IF	CITATIONS
37	Aromatic amino-acid biosynthesis in Candida albicans: identification of the ARO4 gene encoding a second DAHP synthase. Current Genetics, 1996, 29, 441-445.	1.7	2