Immo A Hansen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12047104/publications.pdf

Version: 2024-02-01

44 papers

3,004 citations

186265
28
h-index

243625 44 g-index

45 all docs

45 docs citations

45 times ranked

3296 citing authors

#	Article	IF	Citations
1	Exploratory phosphoproteomics profiling of Aedes aegypti Malpighian tubules during blood meal processing reveals dramatic transition in function. PLoS ONE, 2022, 17, e0271248.	2.5	O
2	A novel Tick Carousel Assay for testing efficacy of repellents on Amblyomma americanum L PeerJ, 2021, 9, e11138.	2.0	3
3	Fat and Happy: Profiling Mosquito Fat Body Lipid Storage and Composition Post-blood Meal. Frontiers in Insect Science, 2021, 1, .	2.1	9
4	Efficacy of Active Ingredients From the EPA 25(B) List in Reducing Attraction of Aedes aegypti (Diptera:) Tj ETQ	q0 0 0 rgBT 1.8	「/Overlock 10
5	Long-Term Mosquito culture with SkitoSnack, an artificial blood meal replacement. PLoS Neglected Tropical Diseases, 2020, 14, e0008591.	3.0	9
6	Low Levels of Pyrethroid Resistance in Hybrid Offspring of a Highly Resistant and a More Susceptible Mosquito Strain. Journal of Insect Science, 2020, 20, .	1.5	4
7	Widespread insecticide resistance in Aedes aegypti L. from New Mexico, U.S.A PLoS ONE, 2019, 14, e0212693.	2.5	39
8	The Effect of SkitoSnack, an Artificial Blood Meal Replacement, on Aedes aegypti Life History Traits and Gut Microbiota. Scientific Reports, 2018, 8, 11023.	3.3	28
9	Colonized Sabethes cyaneus, a Sylvatic New World Mosquito Species, Shows a Low Vector Competence for Zika Virus Relative to Aedes aegypti. Viruses, 2018, 10, 434.	3.3	23
10	Fat Body Organ Culture System in Aedes Aegypti, a Vector of Zika Virus. Journal of Visualized Experiments, 2017 , , .	0.3	12
11	Efficacy of Some Wearable Devices Compared with Spray-On Insect Repellents for the Yellow Fever Mosquito, Aedes aegypti (L.) (Diptera: Culicidae). Journal of Insect Science, 2017, 17, .	1.5	35
12	RNA-Seq Comparison of Larval and Adult Malpighian Tubules of the Yellow Fever Mosquito Aedes aegypti Reveals Life Stage-Specific Changes in Renal Function. Frontiers in Physiology, 2017, 8, 283.	2.8	33
13	Short-Range Responses of the Kissing Bug Triatoma rubida (Hemiptera: Reduviidae) to Carbon Dioxide, Moisture, and Artificial Light. Insects, 2017, 8, 90.	2.2	12
14	Dengue virus serotype 2 infection alters midgut and carcass gene expression in the Asian tiger mosquito, Aedes albopictus. PLoS ONE, 2017, 12, e0171345.	2.5	32
15	Artificial Diets for Mosquitoes. International Journal of Environmental Research and Public Health, 2016, 13, 1267.	2.6	45
16	Functional characterization of aquaporins and aquaglyceroporins of the yellow fever mosquito, Aedes aegypti. Scientific Reports, 2015, 5, 7795.	3.3	52
17	Small mosquitoes, large implications: crowding and starvation affects gene expression and nutrient accumulation in Aedes aegypti. Parasites and Vectors, 2015, 8, 252.	2.5	62
18	Substrate specificity and transport mechanism of amino-acid transceptor Slimfast from Aedes aegypti. Nature Communications, 2015, 6, 8546.	12.8	22

#	Article	IF	CITATIONS
19	The Efficacy of Some Commercially Available Insect Repellents for <i>Aedes aegypti</i> (Diptera:) Tj ETQq1 1 0.	784314 rgBT 1.5	/gyerlock 1
20	Highly evolvable malaria vectors: The genomes of 16 <i>Anopheles</i> mosquitoes. Science, 2015, 347, 1258522.	12.6	492
21	Blood serum and BSA, but neither red blood cells nor hemoglobin can support vitellogenesis and egg production in the dengue vector <i>Aedes aegypti</i> PeerJ, 2015, 3, e938.	2.0	31
22	The Odorant Receptor Co-Receptor from the Bed Bug, Cimex lectularius L. PLoS ONE, 2014, 9, e113692.	2.5	20
23	Four-way regulation of mosquito yolk protein precursor genes by juvenile hormone-, ecdysone-, nutrient-, and insulin-like peptide signaling pathways. Frontiers in Physiology, 2014, 5, 103.	2.8	136
24	Aquaporins Are Critical for Provision of Water during Lactation and Intrauterine Progeny Hydration to Maintain Tsetse Fly Reproductive Success. PLoS Neglected Tropical Diseases, 2014, 8, e2517.	3.0	53
25	Genome Sequence of the Tsetse Fly (<i>Glossina morsitans</i>): Vector of African Trypanosomiasis. Science, 2014, 344, 380-386.	12.6	254
26	Emerging roles of aquaporins in relation to the physiology of blood-feeding arthropods. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2014, 184, 811-825.	1.5	44
27	The effect of the radio-protective agents ethanol, trimethylglycine, and beer on survival of X-ray-sterilized male Aedes aegypti. Parasites and Vectors, 2013, 6, 211.	2.5	16
28	RNAi-mediated Gene Knockdown and In Vivo Diuresis Assay in Adult Female Aedes aegypti Mosquitoes. Journal of Visualized Experiments, 2012, , e3479.	0.3	14
29	SLC7 amino acid transporters of the yellow fever mosquito Aedes aegypti and their role in fat body TOR signaling and reproduction. Journal of Insect Physiology, 2012, 58, 513-522.	2.0	36
30	The Fat Body Transcriptomes of the Yellow Fever Mosquito Aedes aegypti, Pre- and Post- Blood Meal. PLoS ONE, 2011, 6, e22573.	2.5	77
31	AaCAT1 of the Yellow Fever Mosquito, Aedes aegypti. Journal of Biological Chemistry, 2011, 286, 10803-10813.	3.4	33
32	The Aquaporin Gene Family of the Yellow Fever Mosquito, Aedes aegypti. PLoS ONE, 2010, 5, e15578.	2.5	85
33	Juvenile hormone connects larval nutrition with target of rapamycin signaling in the mosquito Aedes aegypti. Journal of Insect Physiology, 2008, 54, 231-239.	2.0	52
34	Forkhead transcription factors regulate mosquito reproduction. Insect Biochemistry and Molecular Biology, 2007, 37, 985-997.	2.7	69
35	Effect of insulin and 20-hydroxyecdysone in the fat body of the yellow fever mosquito, Aedes aegypti. Insect Biochemistry and Molecular Biology, 2007, 37, 1317-1326.	2.7	134
36	Identification of two cationic amino acid transporters required for nutritional signaling during mosquito reproduction. Journal of Experimental Biology, 2006, 209, 3071-3078.	1.7	81

#	Article	IF	CITATIONS
37	GATA Factor Translation Is the Final Downstream Step in the Amino Acid/Target-of-Rapamycin-mediated Vitellogenin Gene Expression in the Anautogenous Mosquito Aedes aegypti. Journal of Biological Chemistry, 2006, 281, 11167-11176.	3.4	97
38	Target of Rapamycin-dependent Activation of S6 Kinase Is a Central Step in the Transduction of Nutritional Signals during Egg Development in a Mosquito. Journal of Biological Chemistry, 2005, 280, 20565-20572.	3.4	146
39	Nutritional regulation of vitellogenesis in mosquitoes: Implications for anautogeny. Insect Biochemistry and Molecular Biology, 2005, 35, 661-675.	2.7	271
40	The Adrenal Secretory Serine Protease AsP Is a Short Secretory Isoform of the Transmembrane Airway Trypsin-Like Protease. Endocrinology, 2004, 145, 1898-1905.	2.8	30
41	Target of rapamycin-mediated amino acid signaling in mosquito anautogeny. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10626-10631.	7.1	222
42	The pro-opiomelanocortin gene of the zebrafish (Danio rerio). Biochemical and Biophysical Research Communications, 2003, 303, 1121-1128.	2.1	47
43	N-Terminal Proopiomelanocortin Acts as a Mitogen in Adrenocortical Tumor Cells and Decreases Adrenal Steroidogenesis. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 2171-2179.	3.6	64
44	Interaction of the anterior fat body protein with the hexamerin receptor in the blowfly Calliphora vicina. FEBS Journal, 2002, 269, 954-960.	0.2	20