
Immo A Hansen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12047104/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly evolvable malaria vectors: The genomes of 16 <i>Anopheles</i> mosquitoes. Science, 2015, 347, 1258522.	12.6	492
2	Nutritional regulation of vitellogenesis in mosquitoes: Implications for anautogeny. Insect Biochemistry and Molecular Biology, 2005, 35, 661-675.	2.7	271
3	Genome Sequence of the Tsetse Fly (<i>Glossina morsitans</i>): Vector of African Trypanosomiasis. Science, 2014, 344, 380-386.	12.6	254
4	Target of rapamycin-mediated amino acid signaling in mosquito anautogeny. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10626-10631.	7.1	222
5	Target of Rapamycin-dependent Activation of S6 Kinase Is a Central Step in the Transduction of Nutritional Signals during Egg Development in a Mosquito. Journal of Biological Chemistry, 2005, 280, 20565-20572.	3.4	146
6	Four-way regulation of mosquito yolk protein precursor genes by juvenile hormone-, ecdysone-, nutrient-, and insulin-like peptide signaling pathways. Frontiers in Physiology, 2014, 5, 103.	2.8	136
7	Effect of insulin and 20-hydroxyecdysone in the fat body of the yellow fever mosquito, Aedes aegypti. Insect Biochemistry and Molecular Biology, 2007, 37, 1317-1326.	2.7	134
8	GATA Factor Translation Is the Final Downstream Step in the Amino Acid/Target-of-Rapamycin-mediated Vitellogenin Gene Expression in the Anautogenous Mosquito Aedes aegypti. Journal of Biological Chemistry, 2006, 281, 11167-11176.	3.4	97
9	The Aquaporin Gene Family of the Yellow Fever Mosquito, Aedes aegypti. PLoS ONE, 2010, 5, e15578.	2.5	85
10	Identification of two cationic amino acid transporters required for nutritional signaling during mosquito reproduction. Journal of Experimental Biology, 2006, 209, 3071-3078.	1.7	81
11	The Fat Body Transcriptomes of the Yellow Fever Mosquito Aedes aegypti, Pre- and Post- Blood Meal. PLoS ONE, 2011, 6, e22573.	2.5	77
12	Forkhead transcription factors regulate mosquito reproduction. Insect Biochemistry and Molecular Biology, 2007, 37, 985-997.	2.7	69
13	N-Terminal Proopiomelanocortin Acts as a Mitogen in Adrenocortical Tumor Cells and Decreases Adrenal Steroidogenesis. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 2171-2179.	3.6	64
14	Small mosquitoes, large implications: crowding and starvation affects gene expression and nutrient accumulation in Aedes aegypti. Parasites and Vectors, 2015, 8, 252.	2.5	62
15	Aquaporins Are Critical for Provision of Water during Lactation and Intrauterine Progeny Hydration to Maintain Tsetse Fly Reproductive Success. PLoS Neglected Tropical Diseases, 2014, 8, e2517.	3.0	53
16	Juvenile hormone connects larval nutrition with target of rapamycin signaling in the mosquito Aedes aegypti. Journal of Insect Physiology, 2008, 54, 231-239.	2.0	52
17	Functional characterization of aquaporins and aquaglyceroporins of the yellow fever mosquito, Aedes aegypti. Scientific Reports, 2015, 5, 7795.	3.3	52

The Efficacy of Some Commercially Available Insect Repellents for <i>Aedes aegypti</i>(Diptera:) Tj ETQq0 0 0 rgBT $_{1.5}^{10}$ Verlock $_{50}^{10}$ Tf 50 6.

IMMO A HANSEN

#	Article	IF	CITATIONS
19	The pro-opiomelanocortin gene of the zebrafish (Danio rerio). Biochemical and Biophysical Research Communications, 2003, 303, 1121-1128.	2.1	47
20	Artificial Diets for Mosquitoes. International Journal of Environmental Research and Public Health, 2016, 13, 1267.	2.6	45
21	Emerging roles of aquaporins in relation to the physiology of blood-feeding arthropods. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2014, 184, 811-825.	1.5	44
22	Widespread insecticide resistance in Aedes aegypti L. from New Mexico, U.S.A PLoS ONE, 2019, 14, e0212693.	2.5	39
23	SLC7 amino acid transporters of the yellow fever mosquito Aedes aegypti and their role in fat body TOR signaling and reproduction. Journal of Insect Physiology, 2012, 58, 513-522.	2.0	36
24	Efficacy of Some Wearable Devices Compared with Spray-On Insect Repellents for the Yellow Fever Mosquito, Aedes aegypti (L.) (Diptera: Culicidae). Journal of Insect Science, 2017, 17, .	1.5	35
25	AaCAT1 of the Yellow Fever Mosquito, Aedes aegypti. Journal of Biological Chemistry, 2011, 286, 10803-10813.	3.4	33
26	RNA-Seq Comparison of Larval and Adult Malpighian Tubules of the Yellow Fever Mosquito Aedes aegypti Reveals Life Stage-Specific Changes in Renal Function. Frontiers in Physiology, 2017, 8, 283.	2.8	33
27	Dengue virus serotype 2 infection alters midgut and carcass gene expression in the Asian tiger mosquito, Aedes albopictus. PLoS ONE, 2017, 12, e0171345.	2.5	32
28	Blood serum and BSA, but neither red blood cells nor hemoglobin can support vitellogenesis and egg production in the dengue vector <i>Aedes aegypti</i> . PeerJ, 2015, 3, e938.	2.0	31
29	The Adrenal Secretory Serine Protease AsP Is a Short Secretory Isoform of the Transmembrane Airway Trypsin-Like Protease. Endocrinology, 2004, 145, 1898-1905.	2.8	30
30	The Effect of SkitoSnack, an Artificial Blood Meal Replacement, on Aedes aegypti Life History Traits and Gut Microbiota. Scientific Reports, 2018, 8, 11023.	3.3	28
31	Colonized Sabethes cyaneus, a Sylvatic New World Mosquito Species, Shows a Low Vector Competence for Zika Virus Relative to Aedes aegypti. Viruses, 2018, 10, 434.	3.3	23
32	Substrate specificity and transport mechanism of amino-acid transceptor Slimfast from Aedes aegypti. Nature Communications, 2015, 6, 8546.	12.8	22
33	Interaction of the anterior fat body protein with the hexamerin receptor in the blowfly Calliphora vicina. FEBS Journal, 2002, 269, 954-960.	0.2	20
34	The Odorant Receptor Co-Receptor from the Bed Bug, Cimex lectularius L. PLoS ONE, 2014, 9, e113692.	2.5	20
35	The effect of the radio-protective agents ethanol, trimethylglycine, and beer on survival of X-ray-sterilized male Aedes aegypti. Parasites and Vectors, 2013, 6, 211.	2.5	16
36	RNAi-mediated Gene Knockdown and In Vivo Diuresis Assay in Adult Female Aedes aegypti Mosquitoes. Journal of Visualized Experiments, 2012, , e3479.	0.3	14

IMMO A HANSEN

#	Article	IF	CITATIONS
37	Fat Body Organ Culture System in Aedes Aegypti , a Vector of Zika Virus. Journal of Visualized Experiments, 2017, , .	0.3	12
38	Short-Range Responses of the Kissing Bug Triatoma rubida (Hemiptera: Reduviidae) to Carbon Dioxide, Moisture, and Artificial Light. Insects, 2017, 8, 90.	2.2	12
39	Long-Term Mosquito culture with SkitoSnack, an artificial blood meal replacement. PLoS Neglected Tropical Diseases, 2020, 14, e0008591.	3.0	9
40	Fat and Happy: Profiling Mosquito Fat Body Lipid Storage and Composition Post-blood Meal. Frontiers in Insect Science, 2021, 1, .	2.1	9
41	Efficacy of Active Ingredients From the EPA 25(B) List in Reducing Attraction of Aedes aegypti (Diptera:) Tj ETQq1	1 0.7843 1.8	ląrgBT /C∾
42	Low Levels of Pyrethroid Resistance in Hybrid Offspring of a Highly Resistant and a More Susceptible Mosquito Strain. Journal of Insect Science, 2020, 20, .	1.5	4
43	A novel Tick Carousel Assay for testing efficacy of repellents on Amblyomma americanum L PeerJ, 2021, 9, e11138.	2.0	3
44	Exploratory phosphoproteomics profiling of Aedes aegypti Malpighian tubules during blood meal processing reveals dramatic transition in function. PLoS ONE, 2022, 17, e0271248.	2.5	0