
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/12047001/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Letters, 2008, 8, 323-327.	4.5	4,164
2	Advanced Asymmetric Supercapacitors Based on Ni(OH) ₂ /Graphene and Porous Graphene Electrodes with High Energy Density. Advanced Functional Materials, 2012, 22, 2632-2641.	7.8	1,855
3	Asymmetric Supercapacitors Based on Graphene/MnO ₂ and Activated Carbon Nanofiber Electrodes with High Power and Energy Density. Advanced Functional Materials, 2011, 21, 2366-2375.	7.8	1,827
4	A Threeâ€Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors. Advanced Materials, 2010, 22, 3723-3728.	11.1	1,182
5	Efficient Synthesis of Heteroatom (N or S)â€Doped Graphene Based on Ultrathin Graphene Oxideâ€Porous Silica Sheets for Oxygen Reduction Reactions. Advanced Functional Materials, 2012, 22, 3634-3640.	7.8	1,180
6	Two-Dimensional Graphene Nanoribbons. Journal of the American Chemical Society, 2008, 130, 4216-4217.	6.6	695
7	Catalytic Effects in Lithium–Sulfur Batteries: Promoted Sulfur Transformation and Reduced Shuttle Effect. Advanced Science, 2018, 5, 1700270.	5.6	669
8	Carbonaceous Electrode Materials for Supercapacitors. Advanced Materials, 2013, 25, 3899-3904.	11.1	625
9	Transparent Carbon Films as Electrodes in Organic Solar Cells. Angewandte Chemie - International Edition, 2008, 47, 2990-2992.	7.2	598
10	Graphene-based electrode materials for rechargeable lithium batteries. Journal of Materials Chemistry, 2009, 19, 5871.	6.7	565
11	Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors. Nano Energy, 2015, 12, 141-151.	8.2	540
12	Nanographene onstructed Hollow Carbon Spheres and Their Favorable Electroactivity with Respect to Lithium Storage. Advanced Materials, 2010, 22, 838-842.	11.1	473
13	Renewing Functionalized Graphene as Electrodes for Highâ€Performance Supercapacitors. Advanced Materials, 2012, 24, 6348-6355.	11.1	394
14	Adaptable Silicon–Carbon Nanocables Sandwiched between Reduced Graphene Oxide Sheets as Lithium Ion Battery Anodes. ACS Nano, 2013, 7, 1437-1445.	7.3	392
15	Structural Evolution of 2D Microporous Covalent Triazine-Based Framework toward the Study of High-Performance Supercapacitors. Journal of the American Chemical Society, 2015, 137, 219-225.	6.6	390
16	Two dimensional graphene–SnS ₂ hybrids with superior rate capability for lithium ion storage. Energy and Environmental Science, 2012, 5, 5226-5230.	15.6	386
17	Chemical Approaches toward Grapheneâ€Based Nanomaterials and their Applications in Energyâ€Related Areas. Small, 2012, 8, 630-646.	5.2	368
18	A bottom-up approach from molecular nanographenes to unconventional carbon materials. Journal of Materials Chemistry, 2008, 18, 1472.	6.7	330

#	Article	IF	CITATIONS
19	Graphene hybridization for energy storage applications. Chemical Society Reviews, 2018, 47, 3189-3216.	18.7	297
20	Rod oating: Towards Largeâ€Area Fabrication of Uniform Reduced Graphene Oxide Films for Flexible Touch Screens. Advanced Materials, 2012, 24, 2874-2878.	11.1	285
21	A Germanium–Carbon Nanocomposite Material for Lithium Batteries. Advanced Materials, 2008, 20, 3079-3083.	11.1	271
22	Graphene onfined Sn Nanosheets with Enhanced Lithium Storage Capability. Advanced Materials, 2012, 24, 3538-3543.	11.1	271
23	Templateâ€Directed Synthesis of Pillaredâ€Porous Carbon Nanosheet Architectures: Highâ€Performance Electrode Materials for Supercapacitors. Advanced Energy Materials, 2012, 2, 419-424.	10.2	267
24	Polyaniline electrochromic devices with transparent graphene electrodes. Electrochimica Acta, 2009, 55, 491-497.	2.6	244
25	Design and construction of three dimensional graphene-based composites for lithium ion battery applications. Energy and Environmental Science, 2015, 8, 456-477.	15.6	243
26	Contactâ€Engineered and Voidâ€Involved Silicon/Carbon Nanohybrids as Lithiumâ€Ionâ€Battery Anodes. Advanced Materials, 2013, 25, 3560-3565.	11.1	227
27	The dimensionality of Sn anodes in Li-ion batteries. Materials Today, 2012, 15, 544-552.	8.3	222
28	Rational design of MoS ₂ @graphene nanocables: towards high performance electrode materials for lithium ion batteries. Energy and Environmental Science, 2014, 7, 3320-3325.	15.6	218
29	Fast tuning of covalent triazine frameworks for photocatalytic hydrogen evolution. Chemical Communications, 2017, 53, 5854-5857.	2.2	206
30	Precursor ontrolled Formation of Novel Carbon/Metal and Carbon/Metal Oxide Nanocomposites. Advanced Materials, 2008, 20, 1727-1731.	11.1	192
31	Reduced Graphene Oxideâ€Mediated Growth of Uniform Tin ore/Carbonâ€Sheath Coaxial Nanocables with Enhanced Lithium Ion Storage Properties. Advanced Materials, 2012, 24, 1405-1409.	11.1	182
32	A One‣tep Approach Towards Carbonâ€Encapsulated Hollow Tin Nanoparticles and Their Application in Lithium Batteries. Small, 2007, 3, 2066-2069.	5.2	178
33	High-Performance Silicon Battery Anodes Enabled by Engineering Graphene Assemblies. Nano Letters, 2015, 15, 6222-6228.	4.5	173
34	Synthesis of Microporous Carbon Nanofibers and Nanotubes from Conjugated Polymer Network and Evaluation in Electrochemical Capacitor. Advanced Functional Materials, 2009, 19, 2125-2129.	7.8	172
35	Terephthalonitrile-derived nitrogen-rich networks for high performance supercapacitors. Energy and Environmental Science, 2012, 5, 9747.	15.6	171
36	Bottomâ€Up Construction of Triazineâ€Based Frameworks as Metalâ€Free Electrocatalysts for Oxygen Reduction Reaction. Advanced Materials, 2015, 27, 3190-3195.	11.1	167

#	Article	IF	CITATIONS
37	Pyrolyzed Bacterial Cellulose: A Versatile Support for Lithium Ion Battery Anode Materials. Small, 2013, 9, 2399-2404.	5.2	158
38	Direct Access to Metal or Metal Oxide Nanocrystals Integrated with One-Dimensional Nanoporous Carbons for Electrochemical Energy Storage. Journal of the American Chemical Society, 2010, 132, 15030-15037.	6.6	150
39	Application of graphene and graphene-based materials in clean energy-related devices. International Journal of Energy Research, 2009, 33, 1161-1170.	2.2	147
40	Dimensionally Designed Carbon–Silicon Hybrids for Lithium Storage. Advanced Functional Materials, 2019, 29, 1806061.	7.8	140
41	Tin nanoparticles encapsulated in graphene backboned carbonaceous foams as high-performance anodes for lithium-ion and sodium-ion storage. Nano Energy, 2016, 22, 232-240.	8.2	136
42	Grapheneâ€Based Transparent Conductive Films: Material Systems, Preparation and Applications. Small Methods, 2019, 3, 1800199.	4.6	135
43	Self-Assembly of Positively Charged Discotic PAHs: From Nanofibers to Nanotubes. Angewandte Chemie - International Edition, 2007, 46, 5417-5420.	7.2	133
44	Controllable growth of SnS ₂ nanostructures on nanocarbon surfaces for lithium-ion and sodium-ion storage with high rate capability. Journal of Materials Chemistry A, 2018, 6, 1462-1472.	5.2	117
45	Ultrafast-Charging Silicon-Based Coral-Like Network Anodes for Lithium-Ion Batteries with High Energy and Power Densities. ACS Nano, 2019, 13, 2307-2315.	7.3	115
46	Carbonization of Disclike Molecules in Porous Alumina Membranes: Toward Carbon Nanotubes with Controlled Graphene-Layer Orientation. Angewandte Chemie - International Edition, 2005, 44, 2120-2123.	7.2	111
47	Approaching the Downsizing Limit of Silicon for Surfaceâ€Controlled Lithium Storage. Advanced Materials, 2015, 27, 1526-1532.	11.1	110
48	N,P co-doped hollow carbon nanofiber membranes with superior mass transfer property for trifunctional metal-free electrocatalysis. Nano Energy, 2019, 64, 103879.	8.2	110
49	Chemical amination of graphene oxides and their extraordinary properties in the detection of lead ions. Nanoscale, 2011, 3, 5059.	2.8	104
50	Transparent, highly conductive graphene electrodes from acetylene-assisted thermolysis of graphite oxide sheets and nanographene molecules. Nanotechnology, 2009, 20, 434007.	1.3	103
51	All-biomaterial supercapacitor derived from bacterial cellulose. Nanoscale, 2016, 8, 9146-9150.	2.8	97
52	Au@MnO ₂ Core–Shell Nanomesh Electrodes for Transparent Flexible Supercapacitors. Small, 2014, 10, 4136-4141.	5.2	93
53	Conversion of amorphous polymer networks to covalent organic frameworks under ionothermal conditions: a facile synthesis route for covalent triazine frameworks. Journal of Materials Chemistry A, 2015, 3, 24422-24427.	5.2	91
54	Hydrogen reduced graphene oxide/metal grid hybrid film: towards high performance transparent conductive electrode for flexible electrochromic devices. Carbon, 2015, 81, 232-238.	5.4	91

#	Article	IF	CITATIONS
55	Grapheneâ€Based Optically Transparent Electrodes for Spectroelectrochemistry in the UV–Vis Region. Small, 2010, 6, 184-189.	5.2	86
56	Solid-State Pyrolyses of Metal Phthalocyanines: A Simple Approach towards Nitrogen-Doped CNTs and Metal/Carbon Nanocables. Small, 2005, 1, 798-801.	5.2	84
57	Metal-Free Phenanthrenequinone Cyclotrimer as an Effective Heterogeneous Catalyst. Journal of the American Chemical Society, 2009, 131, 11296-11297.	6.6	84
58	Nanotubes Fabricated from Niâ^'Naphthalocyanine by a Template Method. Journal of the American Chemical Society, 2005, 127, 12792-12793.	6.6	81
59	One-dimensional/two-dimensional hybridization for self-supported binder-free silicon-based lithium ion battery anodes. Nanoscale, 2013, 5, 1470.	2.8	80
60	Rational Design of Carbonâ€Rich Materials for Energy Storage and Conversion. Advanced Materials, 2019, 31, e1804973.	11.1	74
61	A Facile Reduction Method for Rollâ€ŧoâ€Roll Production of High Performance Grapheneâ€Based Transparent Conductive Films. Advanced Materials, 2017, 29, 1605028.	11.1	70
62	Direct Chemical-Vapor-Deposition-Fabricated, Large-Scale Graphene Glass with High Carrier Mobility and Uniformity for Touch Panel Applications. ACS Nano, 2016, 10, 11136-11144.	7.3	69
63	Maximizing pore and heteroatom utilization within N,P-co-doped polypyrrole-derived carbon nanotubes for high-performance supercapacitors. Journal of Materials Chemistry A, 2020, 8, 17558-17567.	5.2	64
64	A simple approach towards one-dimensional mesoporous carbon with superior electrochemical capacitive activity. Chemical Communications, 2009, , 809-811.	2.2	61
65	One-Dimensional Porous Carbon/Platinum Composites for Nanoscale Electrodes. Angewandte Chemie - International Edition, 2007, 46, 3464-3467.	7.2	58
66	Hydrogen-induced effects on the CVD growth of high-quality graphene structures. Nanoscale, 2013, 5, 8363.	2.8	54
67	Managing voids of Si anodes in lithium ion batteries. Nanoscale, 2013, 5, 8864.	2.8	52
68	Intertwined Network of Si/C Nanocables and Carbon Nanotubes as Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2013, 5, 6467-6472.	4.0	50
69	Self-assembly of amphiphilic imidazolium-based hexa-peri-hexabenzo-coronenes into fibreous aggregates. Chemical Communications, 2007, , 2384-2386.	2.2	48
70	A novel SnS ₂ @graphene nanocable network for high-performance lithium storage. RSC Advances, 2014, 4, 23372-23376.	1.7	44
71	Mass Production of Multiâ€Channeled Porous Carbon Nanofibers and Their Application as Binderâ€Free Electrodes for Highâ€Performance Supercapacitors. Small, 2014, 10, 4671-4676.	5.2	42
72	Facile Synthesis of Zn _{0.5} Cd _{0.5} S Ultrathin Nanorods on Reduced Graphene Oxide for Enhanced Photocatalytic Hydrogen Evolution under Visible Light. ChemCatChem, 2015, 7, 609-615.	1.8	42

#	Article	IF	CITATIONS
73	In-Situ Preparation of Boron-Doped Carbons with Ordered Mesopores and Enhanced Electrochemical Properties in Supercapacitors. Journal of the Electrochemical Society, 2012, 159, E177-E182.	1.3	38
74	Highâ€Efficiency and Roomâ€Temperature Reduction of Graphene Oxide: A Facile Green Approach Towards Flexible Graphene Films. Small, 2012, 8, 1180-1184.	5.2	36
75	Graphenal Polymers for Energy Storage. Small, 2014, 10, 2122-2135.	5.2	35
76	A facile Schiff base chemical approach: towards molecular-scale engineering of N-C interface for high performance lithium-sulfur batteries. Nano Energy, 2018, 46, 365-371.	8.2	32
77	A fast room-temperature strategy for direct reduction of graphene oxide films towards flexible transparent conductive films. Journal of Materials Chemistry A, 2014, 2, 10969-10973.	5.2	31
78	Nitrogenâ€Enriched Carbon/CNT Composites Based on Schiffâ€Base Networks: Ultrahigh N Content and Enhanced Lithium Storage Properties. Small, 2018, 14, e1703569.	5.2	31
79	Graphene nanostructures toward clean energy technology applications. Wiley Interdisciplinary Reviews: Energy and Environment, 2012, 1, 317-336.	1.9	30
80	WS2 nanoplates embedded in graphitic carbon nanotubes with excellent electrochemical performance for lithium and sodium storage. Science China Materials, 2018, 61, 671-678.	3.5	29
81	Scallopâ€Inspired Shell Engineering of Microparticles for Stable and High Volumetric Capacity Battery Anodes. Small, 2018, 14, e1800752.	5.2	27
82	Reduced Graphene Oxide Nanoribbon Networks: A Novel Approach towards Scalable Fabrication of Transparent Conductive Films. Small, 2013, 9, 820-824.	5.2	26
83	Graphene-templated formation of 3D tin-based foams for lithium ion storage applications with a long lifespan. Journal of Materials Chemistry A, 2016, 4, 362-367.	5.2	25
84	Sp2-carbon dominant carbonaceous materials for energy conversion and storage. Materials Science and Engineering Reports, 2019, 137, 1-37.	14.8	25
85	Carbonization of Disclike Molecules in Porous Alumina Membranes: Toward Carbon Nanotubes with Controlled Graphene-Layer Orientation. Angewandte Chemie, 2005, 117, 2158-2161.	1.6	24
86	Controlled synthesis of Zn _x Cd _{1â^'x} S nanorods and their composite with RGO for high-performance visible-light photocatalysis. RSC Advances, 2015, 5, 27829-27836.	1.7	22
87	Freestanding carbon-coated CNT/Sn(O ₂) coaxial sponges with enhanced lithium-ion storage capability. Nanoscale, 2015, 7, 20380-20385.	2.8	20
88	Carbonâ€Networkâ€Integrated SnSiO <i>_x</i> ₊₂ Nanofiber Sheathed by Ultrathin Graphitic Carbon for Highly Reversible Lithium Storage. Advanced Energy Materials, 2016, 6, 1502495.	10.2	18
89	Inside-out dual-doping effects on tubular catalysts: Structural and chemical variation for advanced oxygen reduction performance. Nano Research, 2022, 15, 361-367.	5.8	18
90	A Novel Approach Towards Carbon–Ru Electrodes with Mesoporosity for Supercapacitors. ChemPhysChem, 2007, 8, 1013-1015.	1.0	17

#	Article	IF	CITATIONS
91	Shape Control of Periodic Metallic Nanostructures for Transparent Conductive Films. Particle and Particle Systems Characterization, 2017, 34, 1600262.	1.2	17
92	High-quality graphene grown directly on stainless steel meshes through CVD process for enhanced current collectors of supercapacitors. Science China Technological Sciences, 2014, 57, 259-263.	2.0	16
93	A facile and processable integration strategy towards Schiff-base polymer-derived carbonaceous materials with high lithium storage performance. Nanoscale, 2018, 10, 10351-10356.	2.8	15
94	Halbach array assisted assembly of orderly aligned nickel nanowire networks as transparent conductive films. Nanotechnology, 2019, 30, 355301.	1.3	15
95	Controllable Synthesis of Tetraethylenepentamine Modified Graphene Foam (TEPA-GF) for the Removal of Lead ions. Scientific Reports, 2015, 5, 16730.	1.6	14
96	Spatially Interlinked Graphene with Uniformly Loaded Sulfur for High Performance Li‧ Batteries. Chinese Journal of Chemistry, 2016, 34, 41-45.	2.6	11
97	Chemical tailoring of one-dimensional polypyrene nanocapsules at a molecular level: towards ideal sulfur hosts for high-performance Li–S batteries. Journal of Materials Chemistry A, 2019, 7, 2009-2014.	5.2	10
98	A hierarchical layering design for stable, self-restrained and high volumetric binder-free lithium storage. Nanoscale, 2019, 11, 21728-21732.	2.8	8
99	Controlled functionalization of graphene with carboxyl moieties toward multiple applications. RSC Advances, 2016, 6, 58561-58565.	1.7	6
100	Reversible Functionalization: A Scalable Way to Deliver the Structure and Interface of Graphene for Different Macro Applications. Advanced Materials Interfaces, 2016, 3, 1500842.	1.9	4
101	An orientated mass transfer in Ni-Cu tandem nanofibers for highly selective reduction of CO2 to ethanol. Fundamental Research, 2023, 3, 786-795.	1.6	3
102	Facile Synthesis of Zn0.5Cd0.5S Ultrathin Nanorods on Reduced Graphene Oxide for Enhanced Photocatalytic Hydrogen Evolution under Visible Light. ChemCatChem, 2015, 7, 537-537.	1.8	1
103	Graphenal Polymers for Energy Storage Studies. , 2017, , .		0